Exam revision
 Unit 2
 Logical operations

Exam revision
 Unit 2
 Logical operations

Boolean identities and rules		
	AND	OR
Commutative law	A. $B=B . A$	
Associate law	$\left(\mathrm{A} \cdot _\quad\right) \cdot \mathrm{C}=\ldots \cdot\left(\ldots \cdot _\right)$	$(\mathrm{A}+\mathrm{B})+\mathrm{C}=\mathrm{A}+(\mathrm{B}+\mathrm{C})$
Distributive law	$\left(__{+}^{+}\right)+\mathrm{C}=\left({ }_{+}^{+}\right.$	$(\mathrm{A}+\mathrm{B}) \cdot \mathrm{C}=(\mathrm{A} \cdot \mathrm{B})+(\mathrm{A} \cdot \mathrm{C})$
Identity law	A. $1=\mathrm{A}$	
Zero and 1 law		A. $1=1$
Inverse law	A. $\overline{\mathrm{A}}=0$	
Idempotent law		$A+A=A$
Absorption law	$A(A+B)=A$	
Double complement law	$\overline{\mathrm{A}}=\mathrm{A}$	

Exam revision
 Unit 2
 Logical operations

$$
X=A \cdot B+A \cdot \bar{B}
$$

Using the following identities:

$$
\begin{aligned}
& P .1=P \\
& P . Q+P \cdot R=P \cdot(Q+R) \\
& P+\bar{P}=1
\end{aligned}
$$

simplify the Boolean expression:

Complete the following truth table.

(ii) Use this truth table to simplify the expression.

$$
B+(A \cdot \bar{B})
$$

