WJEC MATHEMATICS HIGHER TIER

 QUESTIONS BY TOPIC, NOVEMBER 2016-MiTIS SOLUTIONS

A group of 20 people visited Anglesey for a weekend break.

- 10 of the group visited Beaumaris Castle.
- 13 of the group visited South Stack Lighthouse.
- 4 of the group did not visit either of these places.
(a) Complete the Venn diagram below to show this information. The universal set, ε, contains all of the 20 people in the group.

$20-4=16$

$$
13+10-16=7
$$

(b) One person is chosen at random from the group.

What is the probability that this person visited only one of the two places?

\qquad
\qquad

Agroup of pupils from a schooll fook part in The Undd National Eisteddfod.
All of them competed in at least one of the following compefitions: Singing, Dancing or Reciting.

- 2 of them only took part in a Dancing compefition. V
- 5 only took part in a Reciting competition. \checkmark
- No one took part in both a Recifing and a Dlancing compeifition
- 3 took part in both a Singing and a Dancing competition.
* 9 took part in a Recifing competition.
- 22 took part in a Singing competition.

The Venn diagram below shows some of the above information.
The universal set, e, contains all of the pupils in the group.
One of the pupils in the group is chosen at random.
What is the probability that this person only took part in a Singing compefifion?

At a college, a total of 29 students sturdy one or more of the science subjects Biology Chemistry and Physics.
The 28 students form the universal set, C .
Some parts of the Venn diagram below have already been completed.
It is also known that:

- 5 students study only Biology
- 13 students study Chemistry
(a) Complete the Vern diagram

(b) How many students sturdy Biology and Chemistry but not Physics?
(c) One of the students is chosen at random

The Headteacher of Ysgol Mas Newydd gave option forms to all Year 9 pupils.
The form asked which foreign languages the pupils would like to study in Year 10.
There were 4 languages listed on the form: French, German, Spanish and Mandarin.
The pupils could select as mary of the languages as they wished.
All pupils completed and returned the option form.
The Headteacher displayed the results in a Ven diagram, as shown below.

(a) How many pupils did not select ait least one of the four languages? Circle your answer.

1
3
5
7
(b) How many pupils are there in Year 9 ? Circle your answer.

WJEC INTERMEDIATE TIER TRANSFORMATIONS WORKSHEET

(a) Reflect the triangle below in the x-axis.

(b) Eniarge the triangle below by a scale factor of 3 .

(c) Translate the triangle below 3 squares to the left and 2 squares down.

(a) Reflect the triangle S in the fine $y=2$.

(b) Describe fully a single transformation that transforms triangle S onto triangle T .

Rotate 99° anticlockwise about He posit (00)
(c) (1) Translate the triangle S using the column vector $\binom{-5}{-4}$.

(ii) Write down the column wector that will reverse the translation in part (i).
(a) Rotate triangle A through 90° anticlockwise, about the point $(-2,3)$

-9	-8	-7	-5	-5	-4	-3	-2	-1	0
								-1	
								-2	
								-3	
								-4	
								-5	
								-6	
								-7	
								-8	
								-1	

(b) Enlarge triangle B by a scale factor of $\frac{1}{2}$, using (0,0) as the centre of enlargement. [2]

$\begin{array}{ll}\angle 8 & 4 \leqslant \\ \downarrow 2 & 1 \downarrow\end{array}$

Shade the least number of squares in the lower two quadrants so that the grid has rotational symmetry of order 2.

							and

(a)

Which one af the following equations cold represent the line shown in the graph above Circle your answer.
$y=-x-2 \quad y=-x+2 \quad y=x+2 \quad y=x-2 \quad y=-x$.
(b) Which one of the following points lies an foe lime $2 y=3 x+47$

Circle your answer.
$(2,-5)$
$(-2,5)$

$$
\begin{align*}
& 2 x-2,-5) \tag{5,2}\\
& 2 \times 5=3 \times 2+4-10=-6+4 \\
& 10=10
\end{align*}
$$

c)

What is the greanent of the fine shawn in the graph above? Cimex your answer.

$$
\frac{3}{2} \quad-\frac{3}{2}
$$

$\frac{2}{3} \quad-\frac{2}{3}$
(a) The diagram below show the graph of a straight line for values of x from -3 to 3 .

(0) Write down the gradient of the above line.

(iii) Write down the equation of tie live in the form $y=$ mu * c, where wand c are wi I numbers.

$$
y=2 x+4
$$

(b) Without drawing, show that the lina $2 y=3 x-3$ is parallel to the line $4 y=10 x+7$. You must show working to support your answer.

19. (a) Circle the equation of a straight line that is parallel to the line $3 y=2 x+6$.
$3 y=2 x+7$
$2 y=3 x+6$
$3 y=-2 x+6$
$-3 y=2 x+6$
$2 y=-3 x+6$
(b) Circle the equation of a straight line that is perpendicular to the line $y=5 x-3$.
$y=5 x+3$

$$
y=5 x+\left.\frac{1}{3}\right|_{3}=-
$$

A factory uses a machine to produce electrical sockets.
The manager carries out a survey to investigate the probability of the machine producing a defective socket.

The relative frequency of defective sockets produced was calculated after testing a total of 1000 , $2000,3000,4000$ and 5000 sockets.
The result are platted on the graph below.

(a) How many of the first 3000 sockets tested were defective?
$0.2 \times 3000=150$
(6) Write down the best estimate for the probability that one socket, selected at random, will be defective.
You must giver a reason for your choice.
Probability: 0.048
Reason: \square sorbets tested 80 most reliable

A dice is thrown 5 the res．
The number shown on the dice is recorded after each throw．
The table below show the results recorded．

Number shown on dice	1	2	3	4	5	6
Frequency	9	7	8	7	8	43

（4）The relative frequency of throwing a I was calculated as $\frac{9}{51}=040$ ．
What was the relative frequency of throwing a 6 ？
Gie your answer 路 a decimal．

$$
\frac{13}{50}=0 \cdot 26
$$

（b）The number 4 was thrown 7 timer in the 再路 50 throws．
 dice is thrown 300 c times．

$$
\frac{7}{50}+3000=420
$$

（c）How many mes would you expert a 4 ta be thrown when a fair die e is thrown 3000 times？

$1 \times 3000=500$
 $6 \times 3000=50$

A regular polygon has exterior angles of 45°.
(a) How many sides does this polygon have?

$$
360-8=45 \quad 360 \div 45=8
$$

\qquad
(b) Each side of this regular polygon is 7 cm . A sketch of two sides, $A B$ and $B C$, of the polygon is shown below.

Using only a ruler and a pair of conmpasses, consiruct an accurate drawing that shows these two sides of the polygon.
The point A has been given.
You must show your conetruction arce.

Using onty a ruler and a pair of compasses, construct a perpendicular line from the point P to the line $A B$.

Construct an accurate drawing of triangle $A B C$, where $A B=7 \mathrm{~cm}, A B C=90^{\circ}$ and $B A C=60^{\circ}$. Use only a ruler and a pain of compassec.
The side $A B$ has been drawn for you.
You musat show your construction ares.

PQ and PR are tangent to a circle with centre 0 .
$\mathrm{FPQ}=3 \mathrm{M}^{*}$

Diagram not drawn to sole

Find the size of COR
You must indicate any angles you calculate.
You musigive a reason for each stage of yum working.

\qquad
QOR is isosceles as 2 radii

$$
\text { So } O Q R=\frac{180-150}{2}=15^{\circ}
$$

\qquad

Points A, B, Gand D lie on the circumference of a circle, centre Q. $B D$ is a diameter of the circle.
The straight line $B C=4.7 \mathrm{~cm}$ and $B A C=28^{\circ}$.

Diagram not drawn to scale
Write down the size of BDC.
Hence, calculate the length $B D$.
You must show all your working.

$$
\begin{aligned}
& D=2 T^{\circ} \text { as } A=D \text { as opposite sane chard } \\
& B C D=90^{\circ} \text { as apposite diane ter }
\end{aligned}
$$

$$
\begin{aligned}
& x=\frac{4.2}{\sin 28} \\
& x=10 \mathrm{~cm}
\end{aligned}
$$

Foints A, B and Clie on the circumference of a circles centre 0 .
$A C D=37^{\circ}$.

Diegram not dram to scale

Calculate the give of the reflex angle AOB

$$
360-74=286^{\circ}
$$

A solution to the equation

$$
2 x^{3}-3 x-17=0
$$

lies between 2 and 3.
Use the method of trial and improvement to find this solution correct to 1 decimal place. You must show all your working.

\qquad
\qquad
\qquad
$2.2 \quad 225 \quad 23$
\qquad
$x=23$
\qquad
\qquad
\qquad
\qquad

A solution of the equation

$$
x^{3}+2 x=91
$$

Hes between 4 and 5 .
Use the method of trial and improvement to find this solution confect to 1 decimal place. You must show all your working.

\qquad
\qquad
\qquad
$4.3 \quad 4-35 \quad 4.4$
\qquad
\qquad
\qquad
\qquad

$$
x=4,3
$$

\qquad
\qquad

A solution to the equation

$$
x^{3}-2 x-45=0
$$

lies between 3 and 4.
Use the method of trial and improvement fo find this solution correct to 1 decimal place. You must show all your working.

\qquad
\qquad
\qquad
\qquad
\qquad

Each side of a square is of length $(2 x+3 y) \mathrm{cm}$.

The perimeter of the square is | 2 |
| :---: |

Eat office of a regular octagon of length $(x+2 y) \mathrm{cm}$ The perimeter of the octagon is 72 cm .

Wee an algebraic method to find the value of x and fare value of y.

\qquad

$$
8 x+12 \times 2.5=62
$$

$$
8 x+30=62
$$

$$
8 x=32
$$

$$
x=4
$$

\qquad
\qquad
\qquad
\qquad

$$
x=
$$

$$
y=
$$

Solve the following simultaneous equations using an algebraic (not graphical) method.

$$
\begin{array}{ll}
3 x+4 y=7 & \times 3 \tag{1}\\
2 x-3 y=16 & \times 4
\end{array}
$$

$$
\begin{aligned}
& 9 x+12 y=21 \quad 3 \\
& 8 x-12 y=64
\end{aligned}
$$

(3) $+4 \quad 17 x=85$

$$
x=5 \text { sib an }
$$

$$
\begin{aligned}
3 \times 5+4 y & =7 \\
15+4 y & =7 \\
4 y & =-8
\end{aligned}
$$

$$
y=-2
$$

$$
\left.\begin{array}{l}
4 x-3 y=20 \times 5 \\
6 x-5 y=1
\end{array}\right\} \times 3 \quad S 5
$$

\qquad
\qquad

$$
\begin{array}{ll}
20 x-15 y=10 & 3 \\
18 x-15 y=3 & 4 \tag{4}
\end{array}
$$

(3) -4

$$
\begin{gathered}
2 x=7 \\
x=3.5 \text { sib in } 0 \\
4 \times 3-5-3 y=2 \\
14-3 y=2 \\
-3 y=12 \\
y=4
\end{gathered}
$$

Calculate the length of the side $Q R$ in the triangle $P Q R$ shown below.

$$
\begin{aligned}
& x=\operatorname{Tan} 24 \times 18 \\
& x=8.01 \mathrm{~cm}
\end{aligned}
$$

The area of trangle ADD, shown in the diagram vefow, is $35 \mathrm{~cm}^{2}$. $A D=5$ chit and $B C=32 \mathrm{~cm}$.
D is on the line $A C$, and $B D$ is perpendicular to $A C$.

Disgran rof draw so scale
Caldelate tre size of angle x.
Yon retet show all your working.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The diagram shows two right-angled triangles, joined together along a common side. $S P Q=90^{\circ}, S Q R=90^{\circ}, S Q P=30^{\circ}, P S=6 \mathrm{~cm}$ and $Q R=15 \mathrm{~cm}$.

Calculate the size of angle x.
0 (1) A
\qquad
\qquad
\qquad

$$
y=13
$$

\qquad
\qquad
\qquad

12. Show that the triangle below is not a right-angled triangle.

$$
5 x-9+3 x-2+2 x+1=180
$$

$$
10 x-10=180
$$

$$
10 x=190
$$

$$
x=19
$$

$$
\begin{aligned}
& 5 x-9=86 \\
& 2 x+1=39 \\
& 3 x-2=55
\end{aligned}
$$

$$
\begin{array}{ll}
2 x+1 & =39 \quad \text { No re of }\left(\text { those }=90^{\circ}\right.
\end{array}
$$

80 not nett anted
6. (a) Write down the first three terms of the sequence whose nth term is given by $2 n-5$. [2]
\qquad $2 x-5=-3$ $2 \times 2-5=-1$ $2 \times 3-5=1$
\qquad
\qquad
The first three terms are
(b) Write down an expression for the $n^{\text {th }}$ term of the following sequence.
\qquad

$$
4 n+3
$$

18. (a) Factorise $x^{3}-5 x$.

$$
\begin{aligned}
& \text { Oise } x^{3}-5 x x^{2}-5 \\
& \text { and }
\end{aligned}
$$

(b) Expand and simplify $(2 x-3)(x+4)$.

$$
2 x^{2}+8 \quad 2 x^{2}+5 x-12
$$

(c) Factorise $x^{2}-3 x-28$.
\qquad
\qquad
10. (a) Write down the nth term of the following sequence.
$3,4, \quad 5,6$, \qquad
\qquad
\qquad
\qquad
\qquad
(b) The nth term of a different sequence is given by $n^{2}+7$.
(I) Write down the first three terms of this sequence.
\qquad
\qquad
\qquad
$1^{\text {st }}$ term $=$ \qquad $2^{\text {nd }}$ term $=$ \qquad $3^{\text {rd }}$ term $=$ \qquad
(ii) Which term in this sequence is the first that has a value greater than 85 ?
\qquad
12. Circle the correct answer for each of the following.
(a) $x^{3} \times x^{6}=$
x^{36}
$x^{6.5}$
x^{2}
x^{9}
x^{18}
(b) $(7 x-5 y)-(3 x+2 y)=$

$$
\begin{array}{lll}
7 x-5 y-3 x-2 y \\
4 x-3 y
\end{array} 4 x+3 y \quad-4 x+7 y \quad-4 x-7 y
$$

\qquad

$$
4 x-7 y
$$

18. (a) Factorise $x^{2}-2 x-24$, and hence solve $x^{2}-2 x-24=0$.
\qquad
\qquad

$$
x=6 \text { or } x=-4
$$

\qquad
\qquad
\qquad
\qquad
(b) Solve the equation $\frac{\frac{4 x-3}{2}}{\frac{73}{6}}+\frac{7 x+1}{6}=\frac{29}{2}$.
\qquad

$$
\begin{aligned}
& \frac{12 x-9}{6}+\frac{7 x+4}{6}=\frac{87}{6} \\
& 12 x-9+7 x+1=87 \\
& 19 x-8=87 \\
& 19 x=95 \\
& x=5
\end{aligned}
$$

9. $A B C$ is an isosceles triangle with $A B=A C$.

Calculate the value of y.
$\quad 4 x-3=x+48$ $180-65-65$

$$
3 x=51
$$

$$
x=17
$$

10. Simplify each of the following and circle the correct answer in each case.
(a) $6 p^{6} \times 3 p^{3}$
$9 p^{9} \quad 9 p^{18} \quad 18 p^{18} \quad 18 p^{2}$
(b) $3-4 g^{8} \div 13 \cdot 6 g^{2}$
(c) $\frac{m^{3} \times m^{6}}{m^{9}} \frac{m^{9}}{m^{4}}$

11. (a) Rearrange the following formula to make x the subject. Give your answer in its simplest form.

$$
2(x+y)=7 y-3
$$

\qquad
(b) Write down the nth term of the following sequence.

\qquad

$$
n^{2}+2
$$

(c) Solve $9 x+3=4 x+5$.
$5 x=2$
$x=2$

x	-2	-1	0	1	2	3
$y=2 x^{2}-5$	3		-5	-3	3	13

15. Factorise $x^{2}-7 x-18$, and hence solve $x^{2}-7 x-18=0$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
16. A shop has 31 plant pots.

Some are blue, some are yellow and the rest are red.
There are five more blue pots than yellow pots.
There are four times as many blue pots as there are red pots,
Calculate how many pots there are of each colour.

\qquad
\qquad
\qquad
\qquad
Blue
Yellow
Red 4

x	-2	-1	0	1	2	3	4
$y=2 x^{2}-5 x-1$	17		-1	-4		2	11

(b) $\frac{42}{x}=7$
\qquad
\qquad
\qquad
(c) $13 y-5=9 y+27$

x	-1	0	1	2	3	4	5
$y=x^{2}-5 x+2$	8	2	-2	-4		-2	2

13. (a) Make m the subject of the formula $y=6 m+7$.
\qquad
\qquad

$$
y-1=m
$$

6
(b) Factorise $6 x^{2}-12 x$.

$$
6 x(x-2)
$$

17. William has n marbles.

Lois had 4 times as many marbles as William, but she has now lost 23 of them.
Lois still has more marbles than William.
White down an inequality in terms of n to show the above information.
Use your inequality to find the least number of marbles that William may have.

$$
\begin{array}{r}
4 n-23>9 \\
3 n>23 \\
n>72 / 3
\end{array}
$$

$n=8$ marla
\qquad
\qquad
\qquad
15. In the following formulae, each measurement of length is represented by a letter.

Consider the dimensions implied by the formulae.
Write down, for each case, whether the formula could be for a length, an area, a volume or none of these.

The first one has been done for you.

Formula

$$
d^{3}-3 \cdot 14 r^{2} h
$$

$$
2 \quad 2
$$

$$
d^{2}+h w
$$

$$
\frac{1}{d}+w+h
$$

$$
2 \pi r-\pi r^{2}
$$

12
$\left(\frac{2}{a}+n\right)^{2}$ dwt the
$d^{3}+d w h$ B 3

Formula could be for
\qquad
--- volume

Area Volume
19. Rashid owned n sheep.

Eifion had exactly 4 times as many sheep as Rashic.
Rashid buys 17 extra sheep.
Eifion sells 8 of his sheep.
Eifion still has more sheep than Rashid.
Form an inequality, in terms of n. Solve the inequality to find the least value of n.

$$
3 n>25
$$

$n>8^{1 / 3}$
\qquad

$$
n=9
$$

Find, in standard form, the value of each of the following.
(a) $\frac{7.5 \times 10^{6}}{5000}$
\qquad
\qquad
(b) $\left(2.3 \times 10^{3}\right)+\left(6.4 \times 10^{4}\right)$
\qquad
Calculate the value of $\left(5.41 \times 10^{5}\right) \div\left(2.3 \times 10^{4}\right)$.
Give your answer in standard form. \qquad
\qquad
(a) Express 0.00042 in standard form.

$$
4 \cdot 2 \times 10^{-4}
$$

(b) Calculate the value of $\frac{7.2 \times 10^{6}}{2 \times 10^{-2}}$.

Give your answer in standard form.

$$
3.6 \times 10^{8}
$$

(c) Calculate the value of $\left(4.7 \times 10^{5}\right)-\left(6.2 \times 10^{4}\right)$.

Give your answer in standard form.

 -2 配
Complete the tation by finding the walue of y for $x=-1$ andifor $x=2$ ，

x	-2	-1	0	1	2	3	4
$y=2 x^{2}-2 x-1$	17	6	-1	-4	-3	2	11

$$
\frac{2 \times 1-5 x-1-1}{2+5-1} \quad 2 \times 4-5 \times 2-1
$$

 -2 稢年

(c) Draw the line $y=5$ on the graph paper.

Write down the values of x where the line $y=5$ cuts the curve $y=2 x^{2}-5 x-1$. Give your answers correct to 1 decimal place.

$$
\text { values of } x \text { are }-0.9 \text { and } 3.4
$$

(d) Circle the equation below whose solutions are the values you have given in (c).

$$
2 x^{2}-5 x-6=0
$$

x	-1	0	4	2	2	4	5
$y=x^{2}-5 x+2$	8	2	-2	-4	-4	-2	2

(ib) Complete the table abowe

$3^{2}-5 \times 3+2$
$9-15+2$
(b) On the graph paper below, draw the graph of $y=x^{2}-3 x+2$ for walues of x from -145.

(c) Draw the line $y=-3$ on the graph paper.

Write down the values of x where the line $y=-3$ cuts the curve $y=x^{2}-5 x+2$. Give your answers correct to 1 decimal place.

$$
\text { values of } x \text { are } 1 \cdot 4 \text { and } 3 \cdot 6
$$

(a) Complete the thole below

Draw the graph of $y=24-5$ for values of x hehuecin -3 amd 3
Use the graph paper fellows.

x	-2	-1	0	1	2	3
$y=2 x^{3}-5$	3	-3	-5	-3	3	13

\qquad
$2-5=-3$

(b)

The sketch above can represent only one of the equations given below. Circle this equation.

$$
y=x^{2} \quad y=x^{2}-3 \quad y=-x^{2} \quad\left(y=x^{2}+3 \quad y=3 x\right.
$$

10. The radius of a hemisphere and the radius of a cylinder are equal. The hemisphere and cylinder have equal volumes.

Calculate the ratio of the height of the cylinder to the radius of the cylinder.
H

$$
\begin{aligned}
2 / 3 \pi r^{3} & =\pi r^{2} h \div \pi \\
2 / 3 r^{3} & =r^{2} h \\
2 / 3 r & =h \\
2 r & =3 h
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
height of cylinder: radius of cylinder

$$
=1: 3 / 2
$$

19. By considering algebraic expressions, show that it will never be possible for the surface area of a sphere of radius r to be equal to the surface area of a cube with sides of length r.
\qquad

$$
\begin{aligned}
& 4 \pi r^{2}=6 r^{2} \\
& 4 \pi=6 \quad \div r^{2}
\end{aligned}
$$

\qquad
\qquad
$4 \pi \neq 6$ of is not possible
\qquad
\qquad
\qquad
10. A cylinder just fits inside a hollow cube with sides of length $m \mathrm{~cm}$.

Diagram not drawn to scale

The radius of the cylinder is $\frac{m}{2} \mathrm{~cm}$.
The height of the cylinder is $m \mathrm{~cm}$.
The ratio of the volume of the cube to the volume of the cylinder is given by

$$
\begin{aligned}
& \text { volume of cube : volume of cylinder } \\
& \qquad=k: \pi
\end{aligned}
$$

where k is a number.
Find the value of k.
You must show all your working.

$$
\pi(m / 2)^{2} \times m
$$

$$
m^{3}-\pi m^{3} / 4-m^{3}
$$

$\pi / 4$

$4 \quad \therefore$

$$
k=4
$$

4. A triangular prism of length 2 metres is shown below.

Diagram not drawn to sale
$A C=21 \mathrm{~cm}, B C=35 \mathrm{~cm}$ and $B A C=90^{\circ}$.
(a) In this part of the question, you will be assessed on the quarry of your organisation, communication and accuracy in writing.
Calculate the area of triangle $A B C$.
Gie your answer in cm^{2}.
You must show all your working.
$[5 \div 200 \mathrm{~N}]$
\qquad
\qquad
\qquad
\qquad

$$
\text { Area }=\frac{1}{2} \times 28 \times 21
$$

$$
=294 \mathrm{~cm}^{2}
$$

\qquad
\qquad
(b) Calculate the volume of the prism.

You must give the units of your answer. \qquad
\qquad
\qquad
10. Draw the enlargement of the given triangle, using

- a scale factor of -2 .
- $(-2,1)$ as the centre of enlargement.

$3 \rightarrow 6=6$
21

$=$

15. Describe fully a single transformation that transforms shape A onto shape B.

\qquad
\qquad
16. Gircle either TRUE or FALSE for each stafernent given below

GRAPH	STATEMENT		
	The equation of this graph could be $y=-x^{3}-2$.		FALSE
	The equation of this graph could be $y=x^{3}-9 x$. $\text { NOT T TR } \Omega G G H$	TRUE	FALSE
	The equation of this graph could be $y=x^{-1}$.	(TRUE)	FALSE
	The equation of this graph could be $y=x^{3}+4$.	TRUE	

Graph A

	Equation describing graph A
$y=7 x^{2}$	
$3=-(x) T^{2}$	
$y=x^{4}-7{ }^{2}$	
$y=7-x^{2}$	
$y=x^{2}+7$	

Graphe

\qquad
(b) Using the axes below, sketch the graph of $y=\cos x+1$ for values of x from 0° to 360

15. (a) Using the axes below, sketch the graph of $y=\sin x$ for values of x from 0° to 360°. You nust label any important values on both axes.

(b) Circle the value that is equal to sin 200°.
14. (a) Thatch the curve $y=\sin x$, for values of x in the range $x=0^{\circ}$ to $x=360$.

(b) Solve each of the following equations.

Give all answers in the range $x=0^{\circ}$ to $x=360^{\circ}$.
(5) $\sin x=0$

$$
\sin ^{-1}
$$

$$
180-175
$$

$$
x=17=5,162.5
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(iii) $\sin x+1=0$

$$
\sin x=-1
$$

$$
\frac{\sin ^{-1}}{x}-270
$$

WJEC Higher Tier Trapezium rule \downarrow
18. The graph of $y=x^{2}$ has been drawn below, for values of x from $x=0$ to $x=6$.

Use the trapezium rule, with the ordinates $x=0, x=1, x=2, x=3, x=4, x=5$ and $x=6$, 4 estimate the area of the shaded region shown above.

15. (a) The diagram shows a sketch of the graph $y=f(x)$. The graph passes through the points $(-1,0)$ and $(5,0)$ and its highest point is at $(2,7)$.
 $+3$
Sketch the graph of $y=f(x-3)$ on the axes below.
You must indicate

- the coordinates of the points of intersection of the graph with the x-axis
* the coordinates of the highest or lowest point.

18. The following diagram shows a sketch of the curve $y=f(x)$.

The curve is transformed, as shown below.

Using function notation, complete the following to give the equation of the fransformed curve.
The equation of the fransformed curve is

$$
y=f(x+4)
$$

20. A sketch of the graph $y=f(x)$ is shown below.

Two specific points are show on the graph. They are called a maximum point and a minmum proint.
The maximumpoint shown is $(-2,2)$ and the minmum point shown is $(2,-2)$.

The graphs on the oppesite page are transformations of $y=f(x)$.
Draw a line connecting each graph to the equation describing the bansformetion. One has been done for you.

17. Simplify

$$
\frac{(5 \sqrt{3})^{2}-\frac{2 \sqrt{18}}{\sqrt{2}}}{\sqrt{32} \times \sqrt{2}}
$$

$$
\begin{aligned}
& \text { and state whether your answer is rational or irrational. } \\
& \frac{\frac{1253}{}}{\sqrt{64}} \frac{75}{8}-\frac{69}{8}
\end{aligned}
$$

\qquad
\qquad RATIONAL
\qquad
(c) Find the value of $(\sqrt{63}-\sqrt{7})^{2}$.
\qquad
\qquad

$$
63-21-21+7=48
$$

16. Yow are given that $p=\sqrt{40}$ and $q=\sqrt{10}$.

Circle the correct answer in each of the following:

\qquad
(b) mais equal to
$10 \sqrt{40}$
$40 \sqrt{10}$
200
20

\qquad
\qquad
(c) q^{3} is equal to

625
$10 \sqrt{100}$
\qquad
\qquad
\qquad

19. (a) Give one example to show that the square of an irrational number is not always ration
$(\sqrt{2})^{2}=2$ RATIONAL X

$$
(\pi)^{2}=\pi^{2} \quad \text { IRRATIONAL }
$$

$$
\text { Number }=
$$

$$
\text { Square of the number }=\ldots
$$

(b) Find two different irrational numbers to make the answer to the calculation below ration Complete the calculation by filling in the three boxes.

$$
\begin{gathered}
\sqrt{3} \times \sqrt{12} \\
\sqrt{36}=6
\end{gathered}
$$

18. A 9 -pointed star with centre O. is shown below.

Each side of the star is of length x cm
The distance from the centre to every inner vertex of the star is 7 cm .
The distance from the centre to every outer vertex of the star is 10 cm .

Diagram nat drawn to scale
(a) Calculate the perimeter of the star.

$$
\begin{aligned}
& \text { late et he perimeter of the star } 2 \times 10 \times 7 \times \cos 20 \\
& x^{2}=10^{2}+7^{2}-2 \\
& x^{2}=17.44 \quad 18 \text { edges } \\
& x=4.18
\end{aligned}
$$

\qquad

$$
4.18 \times 18=75.2 \mathrm{~cm}
$$

\qquad
\qquad
(b) Calculate the area of the star
\qquad

$$
\begin{aligned}
& A=\frac{1}{2} a b \sin C \\
& A=\frac{1}{2} \times 10 \times \sin 20
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

13.

Diagram not drawn to scale

By first calculating the size of $\widehat{B C}$, calculate the area of triangle $A B C$. You must show all your working.

\qquad
\qquad
\qquad
\qquad
$164 \mathrm{~V} \times 64 \quad$ Area $=16.3 \mathrm{~cm}^{2}$
$\sin A=0.868$

$$
A=60.3^{\circ}
$$

17. ABC represents the sector of circle with radius 7 con ind centre A, as shown below $B A D=x^{3}, A D=3 \mathrm{~cm}$ and $D D=6 \mathrm{~cm}$.

Find the ane of the shared region $B C D$.
Area whale shape $=$ Area Triangle + Grey area
$\frac{8}{3}$

$$
\begin{gathered}
\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c} \\
\cos A=\frac{3^{2}+7^{2}-\sigma^{2}}{2 \times 3 \times 7} \\
\cos A=112 \cos ^{-1} \\
A=58.4^{\circ}
\end{gathered}
$$

b

$$
\begin{aligned}
\text { Ara Triage } & =\frac{1}{2} \times 7 \times 3 \times 5 i \\
& =88.44 \mathrm{~cm}^{2}
\end{aligned}
$$

$$
\begin{aligned}
\text { Area Sector } & =\frac{58.4}{360} \times \pi \times 7^{2} \\
& =24.97 \mathrm{~cm}^{2} \\
\text { Grey area } & =24.97 \mathrm{~cm}^{2}-8.94 \mathrm{~cm}^{2} \\
& =16.03 \mathrm{~cm}^{2} 2 \mathrm{dp}
\end{aligned}
$$

12. Express $\frac{3 x}{3 x+2}-\frac{2 x}{2 x+7}$ as a single fraction in its simplest form.

$$
\frac{6 x^{2}+21 x-6 x^{2}-4 x}{(3 x+2)(2 x+7)}
$$

\qquad

$$
\frac{17 x}{(3 x+2(2 x+7)}
$$

17. Simplify $\frac{12 x+16}{9 x^{2}-16}$.

$$
\begin{aligned}
& 4 x-16 \\
& \frac{4(3 x+4)}{(3 x-4)(3 x+4)} \\
&= \frac{4}{3 x-4}
\end{aligned}
$$

17. Two similar shapes have areas of $700 \mathrm{~cm}^{2}$ and $140 \mathrm{~cm}^{2}$. The perimeter of the smaller shape is 83 cm . Calculate the perimeter of the larger shape.
\qquad

$$
\begin{aligned}
A S F & =\frac{700}{140}=5 \\
\angle S F & =\sqrt{5} \\
\text { laze r } & =83 \times \sqrt{5} \\
& =185.6 \mathrm{~cm}
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
15. Two similar pyramids have volumes of $3970 \mathrm{~cm}^{3}$ and $3100 \mathrm{~cm}^{3}$ respectively. The height of the larger pyramid is 25 cm . Calculate the height of the smaller pyramid.

$$
V S F^{3}=\frac{3970}{3100}=1.2806
$$

\qquad
\qquad

$$
\begin{aligned}
\angle S F & =\sqrt[3]{1.2806} \\
& =1.0859 \\
25 & \div 1.0859
\end{aligned}
$$

$$
\text { Height }=23.02 \mathrm{~cm}
$$

12. (a) Factorise $(x-7)^{2}+2(x-7)$.

$$
\begin{aligned}
& (x-7)[(x-7)+2] \\
& (x-7)(x-5)
\end{aligned}
$$

\qquad
\qquad
(b) Factorise $12 x^{2}-27 y^{2}$.
\qquad $3\left(4 x^{2}-9 y^{2}\right)$
\qquad

$$
3(2 x-3 y)(2 x+3 y)
$$

16. Use the quadratic formula to solve $(3 x-1)^{2}=x(2 x+3)+7$.

Give your answers correct to 2 decimal places.

$$
\begin{aligned}
& (3 x-1)^{2}=9 x^{2}-6 x+1 \\
& x(2 x+3)+7=2 x^{2}+3 x+7 \\
& 9 x^{2}-6 x+1=2 x^{2}+3 x+7 \\
& v-2 x^{2}-3 x-7 \\
& 7 x^{2}-9 x-6=0 \quad a=7 \quad 6=-9 \quad c=-6 \\
& x=9 \pm \sqrt{81-4 \times 7 \times-6} \\
& 2 \times 7 \\
& x=1.77 \quad r-0.48
\end{aligned}
$$

9. (a) Show that $(10 w+3)(w-1)-(2-3 w)^{2} \equiv w^{2}+5 w-7$.
\qquad

$$
w^{2}+5 w-1
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Use the quadratic formula to solve the equation $w^{2}+5 w-7=0$. $a=1$ $b=5$ $c=-9$

$$
w=\frac{-5 \pm \sqrt{25-4 x 1 \times 7}}{2 \times 1}
$$

18. Solve the equation $x=\frac{7}{5 x-3}$.

Give your answers correct to 2 decimal places.

$$
\begin{array}{ll}
x(5 x-3)=7 \\
5 x^{2}-3 x-7 \\
5 x^{2}-3 x-7=0 \\
a=5 \\
b=-3
\end{array} \quad x=\frac{-3 \pm \sqrt{9-4 \times 5 x-7}}{2 \times 5}
$$

14. Ald has three concrete slabs.

Two of the slabs are square, with each side of length x metres. The third slab is rectangular and measures 1 metre by ($x+1$) metres. The three concrete slabs cover an area of $7 \mathrm{~m}^{2}$.
(a) Show that $2 x^{2}+x-6=0$.

$$
\begin{aligned}
& x^{2}+x^{2}+x+1=7 \\
& 2 x^{2}+x-6=0
\end{aligned}
$$

(b) Solve the equation to find the length of each side of the square slabs. You must justify any decisions that you make.

$$
\left(\begin{array}{l}
\text { You mus- justify } \\
(2 x-3) \text { deicisionsththaty }
\end{array}\right.
$$

\qquad
\qquad
8. Factorise $x^{2}-7 x-18$, and hence solve $x^{2}-7 x-18=0$.
\qquad
\qquad
\qquad
17. Simplify $\frac{12 x+16}{9 x^{2}-16}$.
\qquad
$4(3 x+4)$

$$
(3 x-4)(3 x+4)
$$

\qquad
\qquad
\qquad
\qquad
\qquad

2. Two different squares are constructed. The side length of the smaller square is $x \mathrm{~cm}$. The side length of the larger square is 3 cm longer than the side length of the smaller square. The combined area of the wo squares is $22.5 \mathrm{~cm}^{2}$.
(a) Show that $4 x^{2}+12 x-27=0$.

\qquad $x^{2}+(x+3)(x+3)=22.5$ $x+3$

$$
x^{2}+x^{2}+6 x+9=22 \cdot 5
$$

$$
x^{2}+x+6 x+1=0
$$

$$
4 x^{2}+12 x-27=0
$$

(b) Find the dimensions of each of of the squares. Do not use a trial and improvement method. You must show all your working and justify any decision that you make.
\qquad
\qquad
$2 x+9=0$ or $2 x-3=0$

$$
x=-\frac{9}{2}
$$

$$
x=1.5
$$

x must be positive
\qquad
\qquad
Side length of smaller square $=$ \qquad 45 cm
Side length of larger square $=$ cm
16. The diagram shows two rectangles.

The combined area of both rectangles is $50 \mathrm{~cm}^{2}$.
By considering the areas of the two rectangles, show that $2 x^{2}-5 x-25=0$ and hence find the value of x.

$$
\begin{aligned}
& 3 x^{2}-9 x+x^{2}-x=50 \\
& 4 x^{2}-10 x-50=0-2 \\
& 2 x^{2}-5 x-25=0 \\
& (2 x+5(x-5)=0 \\
& x=-\frac{5}{2} x=5 \\
& + \text { must be tue so } x=5
\end{aligned}
$$

9. (a) Factorise $x^{2}-2 x-24$, and hence solve $x^{2}-2 x-24=0$.
\qquad
\qquad

$$
(x-6)(x+4)=0
$$

$$
x=6 \text { or } x=-4
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Solve the equation $\frac{4 x-3}{2}+\frac{7 x+1}{6}=\frac{29}{2}$.

$$
\begin{gather*}
\frac{12 x-9}{6}+\frac{7 x+1}{6}=\frac{87}{6} \\
19 x-8=87 \\
19 x=95 \\
x=5
\end{gather*}
$$

13. Given that y is inversely proportional to x^{3} and that $y=120$ when $x=2$,
(a) Find an expression for y in terms of x.
$y \propto x^{3}$
\qquad
\qquad
\qquad

$$
960=
$$

(b) Use the expression you found in part (a) to complete the following table.

x	2	10	4
y	120	0.96	15

$y=\frac{960}{10^{3}} \quad 15=\frac{960}{x^{3}}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
11. Given that y is inversely proportional to x and that $y=4$ when $x=3$,
(a) find an expression for y in terms of x,
\qquad
\qquad

$$
k=12
$$

(b) Use the expression you found in (a) to complete the following table.

x	3	025	60
y	4	47	$\frac{1}{5}$

\qquad

$$
\frac{1}{5}=\frac{12}{60}
$$

17. A bag contains 6 red blocks, 4 green blocks and 2 yellow blocks. Three blocks are taken from the bag, at random, without replacement.
(a) What is the probability that the first block removed is red, the second is green and thu third is yellow?
\qquad
\qquad
\qquad
(b) Calculate the probability that all three blocks will be the same colour.

BR
\qquad
OR
OR

\qquad
\qquad
(c) Write down the probability that the three blocks will not be the same colour.

7. 100 boxes each contain 10 balls.

45 of the boxes are labelled A.
They each contain 7 black balls and 3 white bells.
25 of the boxes ape labelled B.
They each contain 4 black balls and 6 white balls.
The rest of the boxes are labelled C
They each contain 8 black balls and 2 white balls.
In a game, a player chooses a box aid random ${ }_{5}$ and then chooses a ball at random from that box.
(a) Complete the tree diagram shown below.

(b) What is the probability that a player will select a black ball?

$$
=0.655
$$

(c) If a large number of people played the game, approximately what fraction of them would you expect to choose a white ball? Circle your answer.

$$
\frac{1}{10}
$$

$\frac{1}{5}$
$\frac{1}{4}$

16. The table below shows the three -day rain forecast for Monday, Tuesday and Wednesday in Egloyswrw.

Day	Probability of rain
Monday	80%
Tuesday	80%
Wednesday	80%

For these three days,
(a) calculate the probability that it will rain on all three days.
\qquad
$0.8 \times 0.8 \times 0 \cdot 8=0.512$
\qquad
\qquad
\qquad
\qquad
\qquad
(b) calculate the probability that it will rain on exactly 2 consecutive days. YYN or NYY

$$
0.8 \times 08 \times 0.2+0.2 \times 0.8 \times 0.8
$$

$0.128+0.128$

7. Allyn often driver from Banger to Cardiff:

He always chooses one of two routes for these journeys
He either travels through Rhayader or through Hereford.
The probability the he travels through Rhayrader is 0.7.
Someinnea he decides to stop for a break during his journey
HEs decision is independent of the route he takes.
The probability that he travels through Rhayader and stope for a break is $0-42$.
(a) Complete the following tree diagram.
\qquad
\qquad

Route
Stops for a break

(b) Calculate the probability that Aby revels through Hereford but does not stop for a break.

$$
0.3 \times 0.4=0.12
$$

18. A game played at a chidren"s party involves throwing a bail into a bucket. Each child tries to get the ball into the bucket in the least number of throws. On each attempt, the probability that Sofia gets the ball into the bucket ionEach attempt is independent of any previous attempt.

Show that she is 5 times more likely to get the ball into the bucket on her first attempt than t have her first successful throw on her second attempt

You must show all your working.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
13. A bag contains 5 red counters and 5 blue counters.

Three counters are drawn at random from the bag at the same time. Calculate the probability that the three counters will be the same colour.
\qquad
\qquad
\qquad
19.

Two of the cards shown above are selected at random, without being replaced.
Find the probability that
(a) the product of the two numbers selected is 12 .
x

$$
\begin{aligned}
& 4 \text { and } 3 \text { or } 3 \text { and } 4 \\
& \frac{3}{6} \times \frac{2}{6} \times \frac{2}{6} \\
& \frac{6}{3 \theta}+\frac{6}{30}=\frac{12}{30} \circ \frac{2}{5}
\end{aligned}
$$

(b) the sum of the wo numbers selected is even.

$$
\begin{aligned}
& \text { (b) the sum of the e } E \text { or } 0 \text { ad } 0 \\
& \frac{4}{6}+\frac{3}{5} \\
& \frac{12}{30} \times \frac{1}{5} \\
& \frac{2}{30}-\frac{14}{30} \text { or } \frac{7}{15}
\end{aligned}
$$

4. All the members of a farming club visited the Royal Welsh Agricultural Show: They all travelled to the show either by bus or by car.
None of them visited the show on more than one day.
The decision fo Travel by car or by bus vas independent of the day of the visit.
A member of the club was selected at random.
The probability that this member travelled by bus was 0.B7.
The probability that this member visited the show on the first day was $\frac{2}{3}$.
(a) Complete the tree diagram shown below

Method of Havel

Day of visit

(b) What is the probability that a member, chosen at random, was not one of those who travelled by bus on the first day of the show?
[3]

\qquad
\qquad
13. A bag contains 5 red counters and 5 blue counters.

Three counters are drawn at random from the bag at the same time.
Calculate the probability that the three counters will be the same colour.
$A R R$ or $B B B$
$\frac{5}{10} \times \frac{4}{9} \times \frac{3}{8}$

$+\frac{60}{720}=\frac{1}{6}$
13. Make x the subject of the following formula.

$$
\begin{aligned}
a(x-b) & =x(c-d) \\
a x-a b & =c x-d x
\end{aligned}
$$

\qquad
\qquad

$$
\begin{aligned}
a x-c x+d x & =a b \\
x(a-c+d) & =a b \\
x & =\frac{a b}{a-c+d}
\end{aligned}
$$

$$
O R x=\frac{-a b}{-a+c-d}
$$

12. Make c the subject of the following formula.

Give your answer in its simplest form.

$$
c-5=\frac{3 c-7}{d}
$$

$$
\begin{aligned}
d-5 d & =3 c-7 \\
c d-3 c & =5 d-7 \\
c(d-3) & =5 d-7 \\
c & =\frac{5 d-7}{d-3}
\end{aligned}
$$

William has n marbles.
Lois had 4 times as many marbles as William, but she has now lost 23 of them.
Lois still has more marbles than Willam.
Write down an inequality in terms of n to show the above information. Use your inequality to find the least number of marbles that William may have.
\qquad
\qquad
\qquad
\qquad
\qquad
$4 n-23>n$
$3 n>23$
n $77 \frac{2}{3}$
\qquad
$n=8$ marbles
\qquad

Rashid owned n sheep.
Eifion had exactly 4 times as many sheep as Rashid.
Rashid buys 17 extra sheep.
Elfin sells 8 of his sheep.
Eifion still has more sheep than Rashid.
Form an inequality, in terms of n.
Solve the inequality to find the least value of n.
You must show all your working.

You must show all your working.	E
	n
$n+17$	$4 n$
	$4 n-8$

$$
\begin{gathered}
4 n-8>n+17 \\
3 n>25 \\
n>81 / 3
\end{gathered}
$$

$$
n=9 \text { sleep }
$$

11.

Complete the following table to give the set of inequalties that describes the shaded re
shown above.

13. (a) On the graph paper below draw the region which satisfies all of the following inequalities

$$
\begin{aligned}
& x+y \leqslant 6 \\
& y \geq \frac{x}{2}+3 \\
& x \geqslant-2
\end{aligned}
$$

(1)

Clearly indicate the region that represents your answer.

\qquad
\qquad

(b) (ii) What is the greatest possible value of x such that all three conditions are met? [1]

$$
x=\alpha
$$

(iii) What is the greatest possible value of y such that all three conditions are met? [1]

$$
y=
$$

\square

Circle the correct answer for each of the following.
(a) $x^{3} \times x^{6}=$
(b) $(7 x-5 y)-(3 x+2 y)=$ $\begin{array}{lll}7 x-5 y-3 x-2 y \\ 4 x-3 y & -4 x+7 y & -4 x-7 y\end{array}$
\qquad
(c) A car travels x miles in 30 minutes.
its average speed in miles per hour is
$\frac{x}{2}$
$\frac{x}{30}$
$2 x$
$\frac{2}{x}$
$30 x$
$x=30$
$2 x=60 m \operatorname{sis}$
Simplify each of the following and circle the correct answer in each case.
(a) $6 p^{6} \times 3 p^{3}$
$9 p^{9} \quad 9 p^{18} \quad 18 p^{18} \quad 18 p^{2} \quad\left(\begin{array}{c}~ \\ \hline\end{array}\right.$
(b) $3.4 g^{8} \div 13.6 g^{2}$
$\frac{g^{4}}{4} \quad\left(\frac{g^{6}}{4}\right)$
9. Circle the correct answer for each of the following statements.
(a) $9^{-\frac{1}{2}}$ is equal to
-3
$-\frac{1}{3} \quad \frac{1}{4 \frac{1}{2}}$
$-4 \frac{1}{2}$
$\frac{1}{3}$
[1]
\qquad
\qquad
(b) $8^{\frac{2}{3}}$ is equal to
\qquad
\qquad
15. (a) Express (4-642 as a faction.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Evaluate $\left(\frac{1}{35}\right)^{-\frac{1}{2}}$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
17. Circle the expression that is equivalent to $w^{-\frac{3}{3}}$.

$$
-(\sqrt[3]{w})^{5} \quad-\frac{3}{5} w \quad-(\sqrt[5]{w})^{5} \quad\left(\frac{1}{(\sqrt[5]{w})^{3}} \quad \frac{1}{(\sqrt[w]{w})^{3}}\right.
$$

\qquad
\qquad
11. (a) Evaluate $49-\frac{1}{2}$.
\qquad
1 \qquad
\qquad
(b) Express $0.3 \overline{7} 2$ as a fraction.

$$
\begin{aligned}
100 x & =37.27272 \\
x & =0.37272
\end{aligned}
$$

$$
\begin{aligned}
99 x & =369 \\
x & =\frac{369}{99}
\end{aligned}
$$

$$
x=\frac{369}{990}
$$

11. A rectangle measures 38 cm by 26 cm . Each measurement is correct to the nearest cm . Calculate the least possible area of the rectangle.
\qquad

$$
37.5+2.5 .5=956.25 \mathrm{~cm}^{2}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
12. The area of a rectangle is $137 \mathrm{~cm}^{2}$, correct to the nearest cm^{2}. Its width is 11 cm , correct to the nearest cm .

Calculate the greatest possible length of the rectangle.
Give your answer comet to 3 significant figures.
Give your answer comet $137.5 \quad 1365$
\qquad
\qquad
\qquad

$$
\text { Big } \angle=\frac{B_{i g A}}{\text { small w }} \quad \frac{1375}{105}=13.1 \mathrm{~cm}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
14. The region between two rectangles is shaded, as shown in the diagram below. All of the measurements shown are given correct to the nearest cm.

Diagram not drawn fo scale
Calculate the greatest possible area of the shaded region.

\qquad

$$
=4 D L \mathrm{~cm}^{2}
$$

PCand PR are farments to a cirle wite cente 0.
$P \mathrm{PQ}=3 \mathrm{H}^{\circ}$.

Drgram hot drant scale

Find the sive of OQR
You must indicafe any ambes you calculate.
wo must give a meason for each stage of your working.

\qquad

Points $A_{s} B_{i}$ Gand Die on the circumference of a circle, centre 0 BD is a diameter of the circle.
The straight line $B C=4.7 \mathrm{~cm}$ and $B A C=28^{\circ}$.

Diagram not drawn to scale
Write down the size of BDC.
Hence, calculate the length BD.
You must chow all your working.

$\cdots \sin 28$
\qquad
\qquad
\qquad
\qquad

Pointing A, B and Cole on the circumference of a circle, centre 0.
$A C B=37^{\circ}$

Diagram not drawn to sex

Calculate the size of the reflex angle ADB.

$$
360-74=286
$$

12. $A_{\text {a }} B$ and C are points on the circumference of a circle. $X Y$ is a tangent to the circle at the point A.

$B \widehat{A} Y=74^{\circ}$ and $A \widehat{B C}=53^{\circ}$.
Prove that triangle $A B C$ is an isosceles triangle.
You must give a reason for any statement that you make or any calculation that you carry out.
\qquad
 [5]
\qquad

$$
\begin{aligned}
C A B & =180-74-53 \text { Angles in a briand } \\
& =53^{\circ}
\end{aligned}
$$

Two ages the same 53° so isosceles triage and one different 74

10. The line chis a tangent to the circle at point Y.

The line EF is parallel to the line GH .
The vertices of triangle EFY/ie on the circle.
$\widehat{E Y G}=60^{\circ}$.

Prove that ELVis an equilateral triangle.
Give a reason for each step to H mistily your proof.
\qquad
$Y E F=60^{\circ}$ alternate angles
$E F 2=60^{\circ}$ alternate segment theorem \qquad
$\begin{aligned} E Y F & =180-60-60 \quad \text { Angles in a triangle } \\ & =10060 \quad \text { add to } 180^{\circ}\end{aligned}$
All ages $=60^{\circ}$ same $s 0$ equilateral triangle
13. The points P, Q and R lie on the circumference of a circle, centre O. $P Q$ is a diameter of the circle.
The straight line $A R B$ is a tangent to the circle.
$Q R B=x$, where x is measured in degrees.

Calculate the size of $P \hat{Q R}$ in terms of x.
You must give a reason for each step of your solution.

$P D R=180-90-x+\square+\square$
$=90-x$

14. Points End Fie on a circle, centre 0 .

The radius of the circle is 11 cm .
The area of the shaded sector is $65 \mathrm{~cm}^{2}$.

Diagram not drawn to scale
(a) Calculate the size of EOF.

(b) Hence, calculate the length of the arc EF.
\qquad

$$
\begin{aligned}
& L=\frac{\theta}{360} \times \pi D \\
& L=\frac{74 \cdot 5}{36} \times \pi \times 20 \\
& L=13 \mathrm{~cm}
\end{aligned}
$$

17. ABC represents the sector of a circle with radius 7 cm and centre A, as shown below. $B A C=x^{*}, A D=3 \mathrm{~cm}$ and $B D=6 \mathrm{~cm}$.

Find the area of the shaded region $B C D$.

\qquad
\qquad
\qquad
\qquad
Area sector $=\frac{68 \times \frac{58.4}{360} \times \pi \times 7^{2} \text {. } 10 .}{}$

$$
=24.97
$$

$$
\begin{aligned}
\text { Grey cuea } & =24.97-8.94 \\
& =16.03 \mathrm{~cm}^{2}
\end{aligned}
$$

16. Triangle $A B C$ is an isosceles triangle with $\widehat{A B C}=\widehat{A C B}$.

Diagram not drawn to scale
P and Q are points on $A B$ and $A C$ respectively such that $A P=A Q$.
Prove that triangle $A B Q$ is congruent to triangle $A C P$.
You must give reasons for each step of your proof.
\qquad
As $A B C$ is isosceles $A B=A C=y$
$A P=A Q=z$

14. The two triangles shown below are not drawn to scale.

Which one of the following statements is correct? Give full reasons for your answer.

\qquad
\qquad
\qquad

\qquad
\qquad

14. SSS, SAS, ASA and RHS are notations used to describe the conditions required to prove that two tingles are congruent.
[$\mathrm{S} \equiv$ Side, $\mathrm{A} \equiv$ Angle $\mathrm{R} \equiv$ Right angle and $\mathrm{H} \equiv$ Hypotenuse]
The following triangles are not drawn to scale.
For each pair of triangles, circle the correct statement.

21. The cube belvw has ani hernal dingoral of length zicri.

Calualle tie ralue of x

$$
x=11.55 \mathrm{~cm} 2 \mathrm{dp}
$$

In the following formulae, each measurement of length is represented by a letter.
Consider the dimensions implied by the formulae.
Write down, for each case, whether the formula could be for a length, an area, a volume or none of these.

The first one has been done for you.

Formula
$d^{3}-314 r^{2} h$

$d+w+h$

$2 \pi r-\pi r^{2}$
$(a+b) w$
drothw
$d^{3}+d w h$
33

Formula could be for

