Key vocab	
Binary	Numbering system which uses base 2 (0s & 1s) – the only language that computers truly understand. 0 means off, 1 means on.
Denary	Numbering system which uses base 10 (0-9) – these are our normal numbers that we use every day. (Otherwise known as decimal)
Hexadecimal	Numbering system which uses base 16 (0-9 and A-F). These numbers are used to represent colours and code in assembly language, as they are easier for humans to understand than binary.

Binary shifts

<u>Left hand shift</u> will multiple a binary number by 2.

Each shift multiples the number by 2 1^{st} shift is 2, 2^{nd} shift is 4, 3^{rd} shift is 8 etc.

<u>Right hand shift</u> will divide a binary number by 2. Each shift divides the number by 2 1st shift is 2, 2nd shift is 4, 3rd shift is 8 etc.

Card: 4.1

Overflow

Understand that if the result of an addition or shift process results in a number that is too large to fit in the space available then an overflow has occurred.

Example=

When we add two numbers together that would produce a number over 255 (we would generate a 9th binary value)

Key information:									
Denary to	Card: 4.2								
Step 1 Draw the table below.									
Step 2	Think?!- how many of the numbers at the top of the column can I use to make up the number I'm trying to convert?								
Step 3	Place a 1 in the columns you can use and a 0 in the ones you c	an't use	2.						
Step 4	Make sure all the columns with a 1 add up to the number you are converting.								
Enter	the number you want # 128 64 32 16 8	4	2	1					
to cor	27 0 0 0 1 1	0	1	1					

- The numbers 128, 64 and 32 are too large
- I can use 16 to make up 27. I take away 16 from 27 and that leaves 11.
- I can use 8 to make up 11. take the numbers away from each other.
- That leave 3
- 4 is too large but 2 and 1 are ok. Add the columns with a 1 in and I get 27.

Key information:											
Binary to denary								Card: 4.3			
Step 1	1 Draw the table below.										
Step 2	Think?!- how many of the numbers at the top of the column can I use to make up the number I'm trying to convert?										
Step 3	Add up all of the columns with a 1 in them.										
Step 4	4 Make sure all the columns with a 1 add up to the number you are converting.										
Enter	the number you have	#	128	64	32	16	8	4	2	1	
conve	rted	130	1	0	0	0	0	0	1	0	

- I have a 1 in two columns.
- I add the numbers with a 1 in their column

Key	inforı	mation:	Hexad • 10 • 11 • Etc.	lecimal u we use A we use B . until we	uses the N B e reach t	numbe he nur	rs 0-9 nber 1	and the 6 whicl	en for: h is represe	Card: 4.4
Bina	Binary/denary to hexadecimal									
Step	Step 1 Draw the table below.									
Step 2 If it's a denary number you are converting, put it into binary. At this stage we want a binary number.										
Step	3	Add an add 16,32,64,12	itional rov 8	w at the to	op and sp	lit the ta	able inte	o 2 sets	of 4. place a	1,2,4,8 above the
Step	4	On each sid the left han	e of the n d side. Th	ew table is adds up	add up th o to 12. W	e numb /e know	ers. So 12 is C	in the e so the f	xample belov first part of th	w we add the 1's on ne answer is C.
Step	5	On the right We bring th	t hand sid Iem toget	e we do t her and g	he same. et C7. Thi	We add s is our	l up the hexade	1's. we cimal nu	add the 4, 2 umber to rep	and 1. we get 7. resent 99.
		8	4	2	1					
	#	128	64	32	16	8	4	2	1	
	199	1	1	0	0	0	1	1	1	

Key infor	mation: _H	exadecimal us	ses the nur	and then for:	Card: 4.5	
	•	11 we use B Etc. until we	reach the	number 1	L6 which is repres	sented with an F
Hexadecimal	to binary/denary					
Step 1	Take your hexad	ecimal number a	nd split it int	o its 2 part	s. C7 we split into C a	and 7
Step 2	If the left hand s We do the same <u>If either is a num</u>	ide is a letter we thing with the ri ıber we leave it a	convert it to ght hand side <u>is it is</u>	its numbe e.	r. So C is 12	
Step 3	We now have 2 by 16. We get 19	numbers. We mu 92.	Iltiple the lef	t hand num	ber by 16. so in our	example we multiply 12
Step 4	We add this new final denary num	number to the r ber	number on th	ne right. In	our example we add	192 with 7. this is the
Step 5	If we want this h before.	exadecimal num	ber to be in l	pinary we ji	ust plot it into the tal	ble we have used
Example 1	Hexadecima Step 2= A is 3 Step 3= 10*1 Step 4= 160+ Final denary	l number= A 5 10 L6 -5 (right hand number= 165	I number)	Example 2	2 Hexadecimal Step 2= B is 1 Step 3= 11*16 Step 4= 176+2 Final denary r	number= B F 1, F is 16 5 16 (right hand number) number= 192

Key information: Hexadecimal uses the numbers 0-9 and then for:

- 10 we use A
- 11 we use B
- Etc. until we reach the number 16 which is represented with an F

Card: 4.6

Understand that a binary number is far easier to use as the shorter hexadecimal notation.

Example 1 Binary number= 001110001111 Step 1= split each binary number into 4's Step 2= convert each set of 4 hex values Step 3= 0011 becomes 3, 1000 becomes 8 and 1111 becomes 15 or E Final hexadecimal number= 3,8,E

Card: 4.7

Binary addition										
Step 1	Draw the table. Setup your binary numbers as a normal addition calculation in two rows. Convert if needed. Convert your denary number to binary									
Step 2	Add up the numbers.									
Step 3	Place a number 1 in the columns that allow you to make up the added numbers									
		#	128	64	32	16	8	4	2	1
		45	0	0	1	0	1	1	0	1
Example Add= 45 and 00000001		1	0	0	0	0	0	0	0	1
		46	0	0	1	0	1	1	1	0

Vector images

- 1. These are made up of lines, shapes and curves NO PIXELS.
- 2. <u>Their dimensions can be changed without affecting the</u> <u>quality of the image</u>
- 3. They are smaller than bitmap images (memory size)

Bitmap images

- 1. These are photographs that are made up of pixels
- 2. Individual pixels can be edited
- 3. If their dimensions are changed this affects the quality of the pixels
- 4. Large file sizes

Card: 4.8

Raster images

- Dot matrix of pixels to represent an image
- 2. Very large file size
- 3. If their dimensions are changed this affects the quality of the pixels

Sound

That sound is stored as a digital

representation. The digital representation is achieved by sampling (signal processing). The sample quality can be affected by the sample rate and sample frequency. The higher the sample rate and frequency, the larger the resultant sample.

Card: 4.9

Meta data

Data about data

Data stored about a particular file. Examples include:

Location Author Recording date Artist Song title etc.

Word Document Metadata Example

Character sets

Characters, symbols, numbers are all represented by a unique binary code.

We use ASCII to be able to interchange data between different programs. This is called a characters sets. There are different versions

Unicode is another example of one. It can represent more characters but needs more memory to store its character set.

Data types

Integer (whole number) 7, 0, 15, -5 Boolean (true/false) Real (number with, or without, fraction) 7.2, 8.9, -6.8, 12.0 Character (single character) a, @, #, 8, Q String (one or more character) Hello, abc, b, Y

Data structures

Ways we can store and structure data (practical examples in class will be given)

