WJEC
INTERMEDIATE TIER
REVISION BOOK
SJHS

SOLUTIONS

Contents:

1.	Angles pg.	3-8
2.	Probability pg.	9-14
3.	Using known facts pg.	15-17
4.	Sequences pg.	18-20
5.	Quadratic graphs pg.	21-26
6.	Standard form pg.	27-28
7.	Simultaneous equations pg.	29-31
8.	Expanding brackets pg.	32-33
9.	Reverse perimeter, area and volume pg.	34-42
10	.Trial and improvement pg.	43-45
11	Trigonometry pg.	46-48
12	.Decimals pg.	49-52
13	.Simplifying expressions and substitution pg.	53-55
14	.Constructions pg.	56-58
15	.Factorising pg.	59-61
16	i.Inequalities pg.	62-64
17	'.Transformations pg.	65-72
18	3.Venn diagrams pg.	73-75
19).Function machines pg.	76-77
20	olindex laws pg.	78-78
21	Straight line graphs pg.	79-81
22	.Relative frequency pg.	82-83
23	B.Circle Theorems pg.	84-86
24	I.Percentages pg.	87-90
25	5.MMMR pg.	91-92
26	5.Pythagoras theorem pg.	93-94
27	7.Tree diagrams pg.	95-97

WJEC INTERMEDIATE TIER ANGLES WORKSHEET

A regular polygon has exterior angles of 45°.

How many sides does this polygon have? [2]

360 = 8

ABCD is a quadrilateral.

Diagram not drawn to scale

4 Calculate the value of x.

$$3x + 2x + x + 90 = 360$$

$$6x + 90 = 360$$

$$-90 \downarrow -90$$

$$6x = 270^{\circ}$$

$$\frac{1}{2}6 + \frac{1}{2}6$$

When ABCD is drawn to scale, would the lines AD and BC be parallel or not? You must justify your answer without using a scale drawing.

[2]

ABCD is a quadrilateral.

 $\widehat{ABC} = 93^\circ$, $\widehat{BCD} = 122^\circ$ and $\widehat{ADC} = 85^\circ$. Points P and Q lie on the quadrilateral as shown, such that AP = AQ.

Prove that triangle APQ is an equilateral triangle. You must show all your working.

[5]

Diagram not drawn to scale

If equilateral all sides same length &	
engles same size.	
QAP = 360 - (85+122+93)	
= 360 - 300	*******
= 60°	******

AG = AP : AQP = APQ	
THE THE THOP I AT W	
$\Gamma(QQ \rightarrow CQ) = 2$	•••••
$(180 - 60) = 2 = 120 = 20 = 60^{\circ}$	
All engles the same so equilateral.	

Diagram not drawn to scale

Find the size of angle x .	[3]
180 - 125 = 55°	
	.,
= 200 - (117 + 78 + 55)	
= 360 - 246	
= 114°	
x=^114°	

ABCDE is a regular pentagon with centre O.

Diagram not drawn to scale

Calculate the size of angle x . You must show all your working.						[4]
Negular pentagen	50	all	sides	5ame	length,	- J
This means ea	ch	then	ngle is	isoce	des,	
200 0 700	***************************************	*************				
360 ÷ 5 = 72°						• • • • • •
(180 -72) -2		***************************************				
= 108 = 2	••••••••••••	•••••••••••••	***************************************	***************************************		
= 54°		• • • • • • • • • • • • • • • • • • • •	•••••••••••••••••••••••••••••••••••••••			
					•••••••••••••••••••••••••••••••••••••••	
x= 54°						*****

Diagram not drawn to scale

	(50) - 9(+30) - 2(+20) + 11 = 180
	10x - 10 = 180
	+101+10
	10x = 190
	÷10 1 ÷10
	z = 19°
	$5x-9=5x19-9=86^{\circ}$
angle	$3x-2=3\times19-2=55^{\circ}$ { not 90° : not right
	$2x + 1 = 2x19 + 1 = 39^{\circ}$

ABC is an isosceles triangle with AB = AC.

Diagram not drawn to scale

Calculate the value of y.
150celes so:
4x - 3 = x + 48
-x \ -x
3×-3 = 48
+3 L +3
3x = 51
+3 √+3
x > 17
$4x-3=4x17-3=65^{\circ}$
180 - (65+65) = 180 - 130 = 50°

y = 50°

Three red cards have the following numbers written on them.

Four green cards have the following numbers written on them.

1

2

3

4

In a game, the cards are turned face down.
A player chooses one red card and one green card at random.
The player's score is the sum of the two numbers.

In a game, the cards are furned face down. A player chooses one red card and one green card at random. The player's score is the sum of the two numbers.

(a) Complete the following table.

Red card

	Score			
9	(10)	11)		<u>(3)</u>
6	7	8	9	<u>@</u>
3	4	5	6	7
	1	2	3	4

Green card

[2]	(b) A player wins a prize if the score is more than 9. Safira plays the game once. What is the probability that she wins a prize?
**************	5
	12
[2]	(c) 60 people play the game once. Approximately how many people would you expect to win a prize? $5 \times 60 = 60 \times 5 = 5 \times 5 = 25$
	12 12

 Ceri has a set of cards. Each of her cards is labelled North, East, South or West.

(a) Ceri chooses one card at random from her set of cards.
 Complete the table below to find the probability of Ceri choosing a card labelled West.
 [2]

Label	North	East	South	West
Probability	0-4	0-25	0-2	0.15

1-(0.4+0.25+0.2)	
- 1 - 0.85	***************************************
- 0.15	·····
(b) Ceri chooses one card at random from her set of cards.	
What is the probability that the card is labelled East or South?	[2]
0r2+0.25+0.2=0.45	f_1

(c) Sasha has an identical set of cards. Ceri and Sasha each choose one card at random from their set of cards.	
What is the probability that they both choose a card labelled North?	[2]
B=X 0.4 x 0.4 = 0.16	[-]

Sara is in charge of a game at her school's Christmas party.

Two fair spinners are spun as shown in the example below.

1st Spinner

2nd Spinner

31

32 33

People can make a two-digit number using the numbers shown on the spinners using the following rule:

Multiply the number on the first spinner by 10 and then add the number on the second spinner.

One example, as shown above, makes the number 21, because $2 \times 10 + 1 = 21$.

(a)	How many different numbers can be made playing this game?	M
fæð.	$1 \times 10 + 1 = 11 2 \times 10 + 1 = 21$	3x(0+1=
• 404 4777 **	$1 \times 10 + 2 = 12$ $2 \times 10 + 2 = 22$	3×10+2=
	$1 \times 10 + 3 = 13$ $2 \times 10 + 3 = 23$	3×10+3=
(b)	While down all the prime numbers that can be made playing this game. Prime number only divisible by o	ne 8 Hself
	11, 13, 23, 31	
,, 112 11 11		**** *** (** **** *** *** *** *** ***
(c)	What is the probability that a person makes a prime number when pla once?	ying the game [2]
	4	. 2272 773 414 2488 999 4444 209 117 2774 7
	9	I PANESTI I I PEROPERTURE ELLE FELI SAN SETTE A.

(a)	(a) A fair, six-sided dice is rolled. What is the probability that a 4 is shown on the dice? Circle your answer.					
	6%	<u>1</u> 5	1 4	6.1	$\left(\begin{array}{c} \frac{1}{6} \end{array}\right)$	[1]
(b)	Sian has a 2	tets were sold at 20% chance of wi ickets did Sian bu answer.	oning the top ori	ze.		[1]
	1	2	4	10	20	
	20/-	20 = 0.7	50	×0.2=1	0	
		100				*********
(c)	Office Design 12	taken at random	from the bag.	v beads and pink b	eads.	
		ity that the bead i	J			
	Circle your a	nswer.	Deads could hav	e been in the bag?	?	[1]
	6 blue 6 yellow 3 pink	5 blue 5 yellow 6 pink	1 blve 1 yellow 5 oink	5 blue 5 yellow 1 pink	6 blue 3 yellow 6 pink	
6161	3=15	5+5+5=15	5+1+1=7	5+5+1211	6+3+62	S
3	= 1	5=1	5	<u>t</u>	6 = 2	
15	2 5	15 3	7	11	15 5	
				••••		

A fair six-sided dice and a fair coin are thrown together once.

Circle the correct answer for each of the following statements.

(a) The number of possible outcomes is $C \in \mathcal{L} = \{2\}$ [1]

2 6 8 12 24.

(b) The probability of getting a 4 on the dice and a tail on the coin is $C \in \mathcal{L} = \{2\}$ [1] $C \in \mathcal{L} = \{2\}$ [2]

(b) The probability of getting a multiple of 3 on the dice and a head on the coin is $C \in \mathcal{L} = \{2\}$ [1]

(c) The probability of getting a multiple of 3 on the dice and a head on the coin is $C \in \mathcal{L} = \{2\}$ [2]

Space for working:

The following cards spell out the name Ystradgynlais.

Y	S	T	R	A	D	G	Υ	N	L	A	S

In an experiment, the cards are turned face down and rearranged. A card is selected at random and the letter on the card is recorded.

The experiment is carried out 325 times.

How many times would you expect the letter Y to be recorded?	131
P(Y) = 2	[~]
2 x 325 = 325 x 2 = 50	
13	
	Г

(a) Estimate the value of $\frac{41.3 \times 29.6}{198.7}$.

You must show all your working. $\frac{40 \times 30}{200} = \frac{12.00}{200} = \frac{6}{200}$ (b) Given that $54 \times 84.2 = 4546.8$, write down the exact value of each of the following.

(i) $540 \times 842 = \frac{4546.8}{54} = \frac{84.2}{200}$ [1]

= 5,4

[1]

A whole number is written on a card.
You are given three clues to help you work out the number on the card.
Clue 1: Double the number is between 8 and 18 inclusive.
Clue 2: The number is a prime number.
Clue 3: The number is not a factor of 100.
What is the number on the card? You must show all your working. [3]
Clue 1: 8=4 10=5 12=6 14=7 16=8 18=9
2 2 2 2 2 2
Clue 2: * 5, 8, 7, 8, 8
Clue 3: 100 20 100 = 14.3
5 (7)
The number on the card is

A fraction is written as $\frac{a}{b}$.

- The fraction is a multiple of 0-2.
- The fraction is greater than $\frac{1}{2}$.
- The fraction is less than 75%.

Write down the fraction as $\frac{a}{b}$, where a and b are whole numbers.									[3]
• ().2=	2 Mul-	tiples of	0.2=	2 10	<u>4</u> 10	10	8. 10	
e (ireater	than 1 2	: 6, 10	8 ,. 10					
o L	ess th	an 75½.(75 700) *, nswer = 6						
Look Circle	at the follow e the correct	ing descriptions name for each o	of special qua						
(a)		ls intersect at 90 iagonal is a line ([1]
(b)	Kite)	Rhombus /// pair of sides are p	Square arallel	Trapez	zium V	R	ectangle		5. Target
(L)y	Kite	Rhombus	Square	Trapez	zium)	R	ectangle		
(c)		es are equal. als are not equal	in length.						[1]
	Kite	Rhombus	Square	Trape	zium	R	ectangle		

(c)	33 \sim 26 \rightarrow 19 \rightarrow 12 \rightarrow 5 \sim 2	[2]
(a)	Write down the next two numbers in the following sequence. 35, $\frac{-10}{25}$, $\frac{-9}{25}$, $\frac{-9}{16}$, $\frac{-8}{8}$, $\frac{-1}{35}$, $\frac{-5}{16}$, $\frac{-5}{16}$	[2]
(a)	Write down the next two numbers in the following sequence. $22 \xrightarrow{-1} 21 \xrightarrow{-3} 18 \xrightarrow{-5} 13 \xrightarrow{-7} 6 \xrightarrow{-9} -3$	[2]

(a)	Write down the nth term of the following sequence. [2]	
	+2 (3, +1) 5, +1 6, +2 (1, 2, 3, 4)	
	n+2	
/63	The <i>n</i> th term of a different sequence is given by $n^2 + 7$.	
(b)	(i) Write down the first three terms of this sequence. [2]	
	$1^{2}+7-1+7-8$ $2^{2}+7-4+7-11$	
	32+7=9+7=16	
	1st term = 8 2nd term = 16	٠
	(ii) Which term in this sequence is the first that has a value greater than 85? [2]	
	$n^{2}+7 \ge 85$ $-1 \lor -7$	
	$n^2 > 78$	
	Answer = 9 term.	
	Answer =term.	
(a)	Write down the first three terms of the sequence whose n th term is given by $2n-5$.	[2]
1 /	2(1)-5= 2-5=-3	
	2(2)-5= 4-5 = -1	
	2(3)-5=6-5 = 1	
,	7 -1 . 1	
	The first three terms are $\frac{-3}{2}$, and $\frac{-1}{2}$	
(b	Write down an expression for the nth term of the following sequence.	[2]
	$+3 \stackrel{7}{\leftarrow} \stackrel{+4}{\longrightarrow} 11, \stackrel{+4}{\longrightarrow} 15, \stackrel{+4}{\longrightarrow} 19, \dots$	
,	74 0 12 10	
,,,,,	40+3	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,		

WJEC INTERMEDIATE TIER QUADRATIC GRAPHS WORKSHEET

11. (a) The table below shows some of the values of $y = 2x^2 - 5x - 1$ for values of x from -2 to 4.

Complete the table by finding the value of y for x = -1 and for x = 2.

[2]

ж	-2	- Agent		7	T	ę.,	<u>#</u>
$y = 2x^2 - 5x - 1$	17	6	-1	-4	-3	2	1 [4]

$$y = 2x - 1^{2} - 5x - 1 - 1$$

$$= 2x - 1 - 5x - 1 - 1$$

$$= 2x - 5x - 1 - 1$$

$$= 2x - 5x - 1$$

$$= 2x - 5x - 1$$

$$= 3x - 10x - 1$$

$$= 6$$

(b) On the graph paper below, draw the graph of $y = 2x^2 - 5x - 1$ for values of x from -2 to 4.

[2]

(c)	Draw the line $y = 5$ on the graph paper.								
	Write down the values of x where the line $y = 5$ cuts the curve $y = 2x^2 - 5x - 1$. Give your answers correct to 1 decimal place.	[2]							
	Values of x are = 0.9 and 3.2								
(d)	Circle the equation below whose solutions are the values you have given in (c). $2x^2 - 5x - 1 = 0$ $2x^2 - 5x - 5 = 0$ $2x^2 - 5x - 5 = 0$	[1]							
	$2x^2 - x - 1 = 0 2x^2 - 5x + 4 = 0$								
		••••							

II. The table below shows some of the values of $y=x^2-3x+2$, for values of x from -1 to 5.

Ţ.	1	ā	1	2	3	4	5
$y=x^2-5x+2$	ÇÇ)	2	-\$	—ஆ	-4	-2	Z

(a) Complete the table above.

$$y = 3^{2} - 5 \times 3 + 2$$

$$= 9 - 5 \times 3 + 2$$

[2]

- = 9 15 + 2 = -4(b) On the graph paper below, draw the graph of $y = x^2 5x + 2$ for values of x from

(c) Draw the line y = -3 on the graph paper.

Write down the values of x where the line y = -3 cuts the curve $y = x^2 - 5x + 2$. Give your answers correct to 1 decimal place.

[2]

Values of x are 1.4 and 3.7

24

(a) Complete the table below, Draw the graph of $y=2x^2-5$ for values of x between -2 and 3. Use the graph paper below. Choose a suitable scale for the y-axis.

Ĭ	-2	– 1	<u> 121</u>	7 9	2	ţ
$y=2x^2-5$	3	-3	-5	-3	Ţ,	13

 $\frac{9^{2} 2 \times -1^{2} - 5}{2 \times 1 - 5}$

= 2 - 5

(b)

The sketch above can represent only one of the equations given below. Circle this equation.

$$v = v^2$$

$$y = x^2 \qquad \qquad y = x^2 - 3 \qquad \qquad y = -x^2$$

$$y = -x^2$$

$$y = x^2 + 3$$

[1]

WJEC INTERMEDIATE TIER STANDARD FORM WORKSHEET

Find, in standard form, the value of each of the following.

(a) $\frac{7.5 \times 10^6}{5000}$	[2]
$7.5 \times 10^6 = 7.5 \times 10^6 = (7.5 \div 5) \times (10^6 \div 10^3)$	
5000 5 × 10 ³	
= 1.5 × 10 ³	
(b) $(2.3 \times 10^3) + (6.4 \times 10^4)$	[2]
(b) $(23 \times 10^3) + (64 \times 10^4)$ $2300 + 64000 = 66300 = 6.63 \times 10^4$,,,,,,,,,,,,,,,

	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Calculate the value of $(5.41 \times 10^5) + (2.3 \times 10^4)$.	
Give your answer in standard form.	[2]
541000 + 23000 = 564000	
= 5.64 x 10 ⁵	

(a) Express 0-4, 2 x (00042 in standard form.	[1]
(b) Calculate the	The value of $\frac{7.2 \times 10^6}{2 \times 10^{-2}}$. Inswer in standard form. $2 \times (10^6 \div 10^{-2})$	[1]
= 3,6 x		
Give your a	The value of $(4.7 \times 10^5) - (6.2 \times 10^4)$. The value of $(4.7 \times 10^5) - (6.2 \times 10^4)$. The value of $(4.7 \times 10^5) - (6.2 \times 10^4)$. The value of $(4.7 \times 10^5) - (6.2 \times 10^4)$. The value of $(4.7 \times 10^5) - (6.2 \times 10^4)$.	[2]
	- 62000	
	408000 - 4.08 × 10 ⁵	

WJEC INTERMEDIATE TIER SIMULTANEOUS EQUATIONS WORKSHEET

Each side of a square is of length (2x + 3y) cm. The perimeter of the square is 62 cm.

Each side of a regular octagon is of length (x + 2y)cm. The perimeter of the octagon is 72cm.

Ise an algebraic method to find the value of x and the value of y .	[5]
Calculate perimeter by adding all	sides
together	
Square: 4(2x+3y) = 8x+12y) Simi	Itaneau = 62
Octagon: $8(x+2y) = 8x+16y$ eq.	vations = 12
8x + 16y = 69 - 72	
-8+ 124 = 7262 8x+1/2x/	
4y = 10 $6x + 30$	
÷47+4	301-30
y=2.5cm	3x = 32
	18718
	x = 4 cm
* HIS 1994 LIST CID THE 1910 NO THE HIS	
$r = \frac{4 \text{ cm}}{r} = \frac{2.5 \text{ cm}}{r}$	

$$3x + 4y = 7$$

 $2x - 3y = 16$

$3x + 4y = 7 \times 2$
$2x - 3y = 16 \times 3$
6x + 8y = 14
$\frac{-6x-9y-48}{2x-3x-2=16}$
$17y = -34$ \ $2x + 6 = 16$
-17 +:17) -6 4-6
y = -2 $2x = 10$
-,2 4-,2
x = 5
J
ß

4x - 3y	= 2 ×	<u> </u>	
6x - 54	-1 ×	4	

24x - 18y = 12 -24x - 20y = 4 2y = 8

4x-3x4=2 4x-12=2 +12 1+12

[4]

4 = 4/

74 V-4

WJEC INTERMEDIATE TIER EXPANDING BRACKETS WORKSHEET

Circle the correct answer for each of the following.

(a)
$$x^3 \times x^6 = x^{3+6} = x^9$$

[1]

ж36

X0-5

 χ^2

 χ^{18}

(b)
$$(7x-5y)-(3x+2y)= (7x^2-5y^2-3x^2-2y)$$

[1]

(c) A car travels x miles in 30 minutes. Its average speed in miles per hour is

[1]

30x

(a) Factorise $x^3 - 5x$.

[1]

 $x(x^2-5)$

(b) Expand and simplify (2x)

[2]

h= -3x4

 $h = -3 \times 4 = -3x - 28$.

(se+4)(se-7)

[2]

Nowing sequence. [2]	(a) Write down the next two numbers in the
	(b) Expand $5(3x-2)$.
[3]	(c) Solve $9x + 3 = 4x + 5$. $-4x \sqrt{-4x}$
	5x+3=5
	5z = 2 ÷5 175
-	x = 2 = 0.4

WJEC INTERMEDIATE TIER REVERSE PERIMETER/AREA/VOLUME WORKSHEET

In this question, you will be assessed on the quality of your organisation, communication and accuracy in writing.

A right-angled triangle BCD is joined to a rectangle ABDE, as shown below.

Diagram not drawn to scale

The area of the rectangle is 45 cm².

Calculate the area of the right-angled triangle. You must show your working.	[5 + 2 OCW]
$A \square = b \times h$ $A \triangle = b$	
45 = 9xh	2_
= 6;	(5
	2
_ 16	i em²

In this question, you will be assessed on the quality of your organisation, communication and accuracy in writing.

- In the diagram below,

 ABCD is a rectangle, and

 PQ is parallel to AD.

Diagram not drawn to scale

The area of ABCD is 52 cm². The area of APQD is 20 cm².

Calculate the values of ∫ and g. You must show all your working.	·	[5 + 2 OCW]
52-20=32 cm²		63007 ETTE ETTE TILE (2001) 6831 01
		.44 20164 5404 4446 4448 54896 4244 /6
A 🖂 = bxh	A 🗆 = bxh	1897AF 2014 724- 4143) 4192 64
32 = 8×f	20 = qx4	1848 1384) pjil 1111))ja 11486 (811 31
58 V -8	20 = 9x4 - 4 1-4	
4 cm = f	5 cm -q	
	J	
40-110-110-110-110-110-110-110-110-110-1		
11) 112 113 114 17 14 14 14 14 14 14 14 14 14 14 14 14 14		
10 100 100 100 100 100 100 100 100 100		
De 100 100 100 100 100 100 100 100 100 10		

(a) In this part of the question, you will be assessed on the quality of your organisation, communication and accuracy in writing.

The two cuboids shown below have equal volumes.

Diagrams not drawn to scale

[4 ÷ 2 OCW]		date the height /r of Cuboid B. nust show all your working.	You mu
	VB = bx	= bxhxL	
xh x2	36 = 2×	- 6 x 3 x 2	
x h	36 = 4x	= 36 cm ³	
+	ナイ チナチ		· ····· · · · · · · · · · · · · · · ·
	9 cm = h		

			SLN PR
[1]	are there in 2-5 litres?	nany cubic centimetres (cm³) : cm³ = 1 Litre	
<u>~</u> 3	5-15000	L = 1000 x 2.	
410	2 23000		
			*** **** **** **** **** **** ****
	0)		

In this question, you will be assessed on the quality of your organisation, communication and accuracy in writing.

A square has a perimeter of 80 cm. A circle fits exactly inside the square, as shown in the diagram.

Calculate the circumference of the circle. Give your answer correct to 1 decimal place. You must show your working.	[4 + 2 OCW]
length of side = 80 = 20 cm	***************************************
4	ardo to a la secola saval res as as a la de sae a
length = diameter = 20 cm	
C= TT x d	
$= \pi \times 20$, as 10 de - 11 de 18 de 1
= 62.8 cm	

In this question, you will be assessed on the quality of your organisation, communication and accuracy in writing.

ABCF is a rectangle. CDEF is a trapezium. BD is a straight line.

Diagram not drawn to scale

AB = 7 cm, BD = 9 cm and DE = 3 cm.

The perimeter of rectangle ABCF is 24 cm.

Calandal L

2 20 cm

[4 + 2 OCW]	Calculate the area of the trapezium CDEF. You must show all your working.
[Perimeter $\Box = 7+7+\alpha+\alpha$
	34 = 14 + 2x
	-14 L-14
	10 = 2x
	- 2 年 1 年 2
	5 cm 00 cm = x
	9-5=4cm
	Area $\triangle = (a+b) \times h$
	$=\frac{7+3}{2}\times4$
38	= 5×4

The area of triangle ABD, shown in the diagram below, is $35\,\mathrm{cm}^2$. $AD=5\,\mathrm{cm}$ and $BC=32\,\mathrm{cm}$. D is on the line AC, and BD is perpendicular to AC.

Diagram not drawn to scale

Calculate the size of angle x. You must show all your working.	[5]
A A = bxh	SOH CAH) TOA
2	
39 = 5xh	cos 0 = A
2	Н
x2 1 x2	cos x = 14
70 = 5xh	32
+5 175	cos' 1 cos'
14cm = h	$x = \cos^{3}\left(\frac{14}{32}\right)$
	= 64.1
	150 150 150 150 150 150 150 150 150 150

Diagram not drawn to scale

A E7 =	624 (a+b) x h	
***************************************	2	
	8-2+17.3 × \$ 9.4	
***************************************	2	
	12.75 × 9.4) v = v = v
	119.85 cm²	

In this question, you will be assessed on the quality of your organisation, communication and accuracy in writing.

AB is the diameter of a circle, centre O, with radius OA = 4.2 cm. ABCD is a square.

Diagram not drawn to scale

Calculate the area of the shaded region. You must show all your working.	[5 + 2 OCW]
r=4.2cm	
$d = 4.2 \times 2 = 8.4 \text{ cm}$	
Area $\square = bxh$	Area O = TIx12
= 8,4 x 8.4	= 11 x 4.22
= 70.56 cm²	= 55,42cm²
Area 1 - 70.56-55.4	+7
printing at the comment of the comme	
= 15,14 cm²	

A triangular prism of length 2 metres is shown below.

Diagram not drawn to scale

AC = 21 cm, BC = 35 cm and $BAC = 90^\circ$.

(a) Calculate the area of triangle ABC. Give your answer in cm². You must show all your working.

You must show all your working.

A $\triangle = bxh$ $c^2 - a^2 = b^2$ $2 \quad 35^2 - 21^2 = b^2$ $= 28 \times 21 \quad 1225 - 441 = b^2$ $2 \quad 784 = b^2$ $= 294 \text{ cm}^2$ $\sqrt{1} \sqrt{1}$ 28 cm = b

A solution to the equation

$$2x^3 - 3x - 17 = 0$$

lies between 2 and 3.

Use the method of trial and improvement to find this solution correct to 1 decimal place. You must show all your working.

4

∞	$2x^3 - 3x - 17 = 0$	B/5
2.5	$2(2.5)^3 - 3(2.5) - 17 = 6.75$	ß
2.4	3.448	β
2.3	0.434	В
7. 0	-2.304	5
1 25	-0.96875	5
L. ~-		K 18 7 18 18 18 18 18 18 18 18 18 18 18 18 18

			ď
<u>) </u>	(2.3^3)	2.25	2.2

$\infty = 2.3$	

......

. A solution to the equation

$$x^3 - 2x - 45 = 0$$

lies between 3 and 4.

Use the method of trial and improvement to find this solution correct to 1 decimal place. You must show all your working. [4]		
$-\infty$	$x^3 - 2x - 45 = 0$	B15
3.5	3.53-2×3.5-45=-9.125	5
3.6	-5.544	5
3,7	-1.747	S
3,8	2.272	ß
3.75	0.234	B
		,
3.7	3.75 3.8	

x = 3	У . П	

lies between 4 and 5.

Use the method of trial and improvement to find this solution correct to 1 decimal place. You must show all your working. [4]		
DC	$x^3 + 2x - 91$	B/S
4.5	$\chi^3 + 2\chi = 91$ 4.5 ³ +2×4.5 = 100.125	<u>B</u>
4.4	93.984	В
4.3	88.107	5
4.35	91.013	B
) 11 11 24 1 11 11 11 11 11 11 11 11 11 11 11 11		
4.3	4.35 4.4	
. 41 ***** * 45 ** ** 1 ** 1 ** 45 *** ** ** ** 1 ** 45	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
T. =	4.3	
en ann ann a de		
) # W		

Calculate the length of the side QR in the triangle PQR shown below.

[3]

SOH CAH (TOA)

tan 0 = 0

A

ton 24 = 0

18

X18 L X18

18xtan 24 = 0

8cm = 0

The area of triangle ABD, shown in the diagram below, is $35\,\mathrm{cm}^2$. $AD = 5\,\mathrm{cm}$ and $BC = 32\,\mathrm{cm}$. D is on the line AC, and BD is perpendicular to AC.

Diagram not drawn to scale

Calculate the size of angle x. You must show all your working. A	50H CAH) TOA
2	
36 = 5xh	cos0 = A
2	H
x2 \ x2	cos 2e = 14
70 -5×h	32
÷ 5 V ÷ 5	cos-1 1 x cos-1
14 cm = h	$x = \cos^{3}\left(\frac{14}{32}\right)$
	x = 64°
40 TO 100 ME OF THE TOTAL PORT OF THE THE THE TANK OF THE TOTAL PORT OF THE	

The diagram shows two right-angled triangles, joined together along a common side. $S\hat{P}Q = 90^{\circ}$, $S\hat{Q}R = 90^{\circ}$, $S\hat{Q}P = 38^{\circ}$, PS = 8 cm and QR = 15 cm.

Diagram not drawn to scale

Calculate the size of angle x.	ICI
(SOH) CAH TOA	23 30H (AH (TOA) [6]
	S JON CAH (TOA)
sine = O	$ten \Theta = 0$
A	A
51n38 - 8	tanx = 15
H	13
XH VXH	ten-1 1 ten-1
Hx5in 38 = 8	$x = ter^{-1} (15)$
751n38 175in38	13
H = 8	= 49"
sin38	
H = 13 cm	

Calculate each of the following.

(a) 0·4 × 0·7	
0.28	
15. 420 TAE	[1]
(b) 13-8-745 °1/3, 78 O	
- 7,45	
6.35	
	[2]
(a) $3^3 - 2^4$ $3^3 - 3 \times 3 \times 3 = 27$ $27 - 16 = 21$	
$3 = 3 \times 3 \times 3 = 16$ $2^4 = 2 \times 2 \times 2 \times 2 = 16$	
2 - Lx Lx L x L = 10	
	pred.
(d) $\frac{9}{10} - \frac{3}{5}$	[2]
$\frac{9}{125} = \frac{3}{45 - 30} = \frac{3}{10}$	
10/5 50 50 10	***********************************
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

Calculate each of the following.

(a) $3^4 \times 10^3$ $3^4 = 3 \times 3 \times 3 \times 3 = 81$ $1000 \times 81 = 81000$

 $10^3 = 10 \times 10 \times 10 = 1000$

(b) 1 D-5

[1]

2

(c) 56-382 -3.82

1.78

(d) $\frac{5}{6} - \frac{2}{3}$ [2]

 $\frac{6-2}{6}$ = $\frac{15-12}{6}$ = $\frac{3}{6}$ = $\frac{1}{6}$

(e) 0.2 × 0.3 0.06

(a) Ca	culate 399	% of £576.					[2]
39	1	39 =	0.39				
		100					
0,3	59 x 5	676 =	£224.	64			
(b) Cal	culate 3 o	f 100.					
	E	wer correct f	o the near	est whole	number		Faa
		100 =				557	[2]
7			~ <u>~~</u>			7.0.1.3.	
				Ξ	43		
(c) How	/ many qua	arters are the	e in 10?				[1]
<u>IC</u>		40		*************			
0.2	5						
(d) Who	d fraction	is ornel to E	nor_s 1a	•9			
		is equal to 5		1			[1]
		1 x 2		17			
		L	0	1	***************************************		
(e) Circl	e the fracti	on that is a r	ecurring de	ecimal.			[1]
	<u>21</u>	10			<u>15</u>	5 1	r.1
2	15	12	68		24	<u>51</u> 170	
21:3	5 3	= 0.6	3				
	5						
10 - 12	5	= 0.8	3		***************************************		
	6				,		
*							
		3					

WJEC INTERMEDIATE TIER SIMPLIFYING WORKSHEET

Write down the next two numbers in the following sequence. $33 \longrightarrow 26 \longrightarrow 19 \longrightarrow 12 \longrightarrow 5 \longrightarrow -2$	[2]
Simplify the expression $10g - 5f + 3f - 3f$	[2]
Using the formula $2T = M + 3K$, find the value of K when $T = 11$ and $M = 4$.	[2]
22 - 4 + 3K	
18 = 3K	
Write down the next two numbers in the following sequence. 35, $\xrightarrow{-10}$ 25, $\xrightarrow{-9}$ 16, $\xrightarrow{-8}$ 8, $\xrightarrow{-7}$ 1.	[2]
Find the value of $2x + 7y$ when $x = -3$ and $y = 10$. $2 \times -3 + 7 \times 10$	[2]
= -6 + 70 = 64	
(c) Simplify the expression $8k+3m-2k-8m$. $6k-5m$	[2]
	Simplify the expression (03) $\rightarrow 50$ $\rightarrow 12$ $\rightarrow 5$ $\rightarrow -2$ Using the formula $2T = M + 3K$, find the value of K when $T = 11$ and $M = 4$. $2 \times 11 - 4 + 3K$ $2 - 4 + 3K$ $-4 + 4 + 3K$ $3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 +$

Circle the correct answer for each of the following.

(a)
$$x^3 \times x^6 = 3x^{3+6} = 3x^{9}$$

[1]

 χ^{36}

x0-5

 χ^2

 (χ^9)

 χ^{18}

(b)
$$(7x-5y)-(3x+2y)= (73)-5y-3x - 2y$$

[1]

4x - 3y

4x-7y

4x + 31

-4x + 7y

-4x - 7y

(c) A car travels x miles in 30 minutes. Its average speed in miles per hour is

[1]

1

 $\frac{x}{2}$

 $\frac{x}{30}$

(2x)

2

30x

S = d = x = 2x

t 0.5

Look at the diagram below.

The expression in each circle is found by adding the expressions in the rectangles on either side of the circle.

Complete the diagram by writing expressions in the blank circles and the blank rectangle.

You must simplify your expressions.

Working space	والمرض ويتماع سأحم وستأوم أحدمه أحدوه واحدوه أحدوها والأحماء ومجاوات والأحمد ومأواه والحرامة ومأوه والحرامة إمواه الماده ومواه والمراه والمراع والمراه والمراه والمراه والمراه والمراه والمراه والمراه والم

WJEC INTERMEDIATE TIER CONSTRUCTIONS WORKSHEET

A regular polygon has exterior angles of 45°.

(3)	How many sides does this polygon have?	[2
	360 = 8	i.
	45	*****

(b) Each side of this regular polygon is 7 cm. A sketch of two sides, AB and BC, of the polygon is shown below.

Diagram not drawn to scale

Using only a ruler and a pair of compasses, construct an accurate drawing that shows these two sides of the polygon.

Using only a ruler and a pair of compasses, construct a perpendicular line from the point P to the line AB.

Construct an accurate drawing of triangle ABC, where AB = 7 cm, $\stackrel{\triangle}{ABC} = 90^\circ$ and $\stackrel{\triangle}{BAC} = 60^\circ$. Use only a ruler and a pair of compasses. The side AB has been drawn for you. You must show your construction arcs.

[3]

(a)	Make m the subject of the formula $y = 6m + 7$.	[2]
177	-7 1-7	
	y-7 = 6 m	
	÷6 V;6	
,	4-7 = m	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	6	[2]
	Factorise $6x^2 - 12x$.	
	6x(x-2)	
Fac	ctorise $x^2 - 7x - 18$, and hence solve $x^2 - 7x - 18 = 0$.	[3]
	5=-7 $(x+2)(x-9)=0$	
,	n=-18	
	1/18 2=-2 or x=9	
	(2,-9)	

** ***		

(a) Factorise $x^2 - 2x - 24$, and hence solve $x^2 - 2x - 24 = 0$.	[3
5=-2 $(x+4)(x-6)=0$	Į
p = -24 $x = -4$ or $x = 6$	
1,24	
2.12	
3,8	
(4,-6)	
(b) Solve the equation $\frac{4x-3}{2} \div \frac{7x+1}{8} = \frac{29}{2}$.	
(b) Solve the equation $\frac{4x-3}{2} + \frac{7x+1}{6} = \frac{29}{7}$.	[4]
12(4x-3) + 4(7x+1) = 12(29)	
(482-36/+282)+47 = 348	
76x - 32 = 348	
+32 ↓+32	
76x = 380	
÷76 L ÷76	
x = 5	

(a) Factorise $x^3 - 5x$.	[1]
$x(x^2-5)$	
(b) Expand and simplify $(2x-3)(x+4)$. $F = 2x \times x = 2x^2 \qquad 2x^2 + 5x - 12$	[2]
$O = 2x \times 4 = 6x$	
$\overline{J} = -3 \times x = (-3x)$	
L = -3x + = -12 (c) Factorise $x^2 - 3x - 28$.	[2]
5=-3 $(x+4)(x-7)$	
p=-28	
1,28	
2,14	
(4,-7)	

WJEC INTERMEDIATE TIER INEQUALITIES WORKSHEET

William has n marbles.

Lois had 4 times as many marbles as William, but she has now lost 23 of them.

Lois still has more marbles than William.

Use your inequal	equality in the lity to find the	erms or e least r	n to snow th number of m	τe abo√ narbles	e information. that William may have.	[4]
William						L.
hois	: 4n -	23				
water and the several at the end of the end						
4n - :	23 \	n				
	-n 1	- n		****************		
3n -7	13 \	0				***************************************
	+23 ↓		3			
	3n \(\)	23				•••••••••••••••••••••••••••••••••••••••
	-31	+3				
	nΔ	7.6				
		(Construction of the Construction of the Const		************		
William	has	at	least	8	marbles.	

Rashid owned n sheep. Eifion had exactly 4 times as many sheep as Rashid.

Rashid buys 17 extra sheep. Eifion sells 8 of his sheep.

Eifion still has more sheep than Rashid.

Form an inequality, in terms of n. Solve the inequality to find the least value of n. You must show all your working.

[5]

.....

.....

Rashid: n + 17 Eifian: 4n-8

4n-8 Jn+17

3n - 8

3n

n > 8.3

heart value of n in 9.

A shop has 31 plant pots.

Some are blue, some are yellow and the rest are red.

There are five more blue pots than yellow pots.

There are four times as many blue pots as there are red pots.

(a) Reflect the triangle below in the x-axis.

(c) Translate the triangle below 3 squares to the left and 2 squares down.

Rotation	90°	anti-cloc	-kwise	about	the_	aigin.	,, ss ey , tr
***************************************	esta u ca troped trop		.,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
	x = 10 10 10 1 10 10 10 7 20 11 11 1 1	ig ab ee was as b kir baan a sal Ap a sa be ha which				* ** ** * ** ** * * * * * * * * * * * *	

(ii) Write down the column vector that will reverse the translation in part (i).

[1]

(5)

Shade the least number of squares in the lower two quadrants so that the grid has rotational symmetry of order 2. [3]

WJEC INTERMEDIATE TIER VENN DIAGRAMS WORKSHEET

A group of 20 people visited Anglesey for a weekend break.

- 10 of the group visited Beauman's Casile.
- 13 of the group visited South Stack Lighthouse. 4 of the group did not visit either of these places.
- Complete the Venn diagram below to show this information. The universal set, s, contains all of the 20 people in the group. (8)

[3]

	48418-23	5 23	92023		
	20-4=16	, 10+	-13 = 23	23-16=	
	10-3-V	13	3-1	<u> </u>	
	10-7=3	3 13	3-7=0	· ?	3171 200 0 41141 2000 4101 4101 12
(b)	One person is choses What is the probabilit 3 +6 =	y that this per	rom the group. Ison visited only	y one of the two places?	[2]
,	20	20		***************************************	,,,,,
14, 12211 ****			1447 1752 2105 / L1111		1211 8834 6116 18332 1889 5644 1811 S
110-1			***** ***** **** **** **** **** ****		

A group of pupils from a school took part in The Urdd National Eisteddfod. All of them competed in at least one of the following competitions: Singing, Dancing or Reciting.

2 of them only took part in a Dancing competition.

5 only took part in a Reciting competition.

No one took part in both a Reciting and a Dancing competition.

3 took part in both a Singing and a Dancing competition.

9 took part in a Reciting competition.

22 took part in a Singing competition.

The Venn diagram below shows some of the above information. The universal set, £, contains all of the pupils in the group.

One of the pupils in the group is chosen at random.

What is the probability that this person only took part in a Singing competition?

F53

At a college, a total of 28 students study one or more of the science subjects: Biology, Chemistry and Physics.

The 28 students form the universal set, E.

Some parts of the Venn diagram below have already been completed.

It is also known that

- 5 students study only Biology
- 13 students study Chemistry

$$5+2+6+3+1+4=21$$
 $28-21=7$

- How many students study Biology and Chemistry but not Physics?
- One of the students is chosen at random. C n.jt What is the probability that this student studies Biology?

$$\frac{5+2+6+3}{28} = \frac{16}{28}$$

[3]

(a)	Solve the equation	3x - 2 = 10.	כז
·········		+21+2	Ę
	*	3x = 12	pr.
		-3 4-3	
		0c = 4	

(b) A number machine is shown below.

- (i) Calculate the OUTPUT when the INPUT is -2.

 -2+5=3

 3×7=21
- (ii) Write down an expression for the OUTPUT when the INPUT is n. [2] 7(n+5)

The diagram below shows a number machine.

Using the number machine, calculate:

(a)	the INPUT when the OUTPUT is 36,	[1]
-	36 - 3 - 12	
	12-7=5	

(b)	the OUTPUT when the INPUT is n.	[2]
	3(n+7)	

WJEC INTERMEDIATE TIER INDEX LAWS WORKSHEET

Circle the correct answer for each of the following.

 $x^3 \times x^6 = x^{3+6} = x^9$

[1]

 x^{36}

X0-5

 x^2

 χ^{18}

(b)
$$(7x-5y)-(3x+2y) = (7)(-5y-3x)-2y$$

[1]

4x - 3y

A car travels x miles in 30 minutes. (C) Its average speed in miles per hour is

[1]

 $\frac{x}{2}$

30x

Simplify each of the following and circle the correct answer in each case.

(a)
$$6p^6 \times 3p^3 = 18p^{673} = 18p^9$$

[1]

[1]

 $9p^{9}$

 $18p^{18}$

 $18p^{2}$

(b) $3.4g^8 \div 13.6g^2 \xrightarrow{3.4} 9^9$

 $0.4g^{6}$

[1]

 m^2

 m^4

WJEC INTERMEDIATE TIER STRAIGHT LINE GRAPHS WORKSHEET

Which one of the following equations could represent the line shown in the graph above? Circle your answer.

$$y=-x-2$$

$$y = -x + 2$$

$$y=x+2$$

$$y=x-1$$
 $y=-x$.

Which one of the following points lies on the line 2y = 3x + 4? [b]

Circle your answer.

ig.

$$(-2, -5)$$

[c]

What is the gradient of the line shown in the graph above? Circle your ensurer.

$$\begin{array}{c}
3 - 20 \\
- 2 - 2 \\
3 - 0
\end{array}$$

Write down the gradient of the above line.

(ii) Write down the equation of the line in the form y = mx + c, where m and c are wh numbers.

Without drawing, show that the line 2y = 5x - 3 is parallel to the line 4y = 10x + 7.

You must show working to support your suspect. $2y = 5x - 3 \xrightarrow{\times 2} 4y = (0x - 6)$ 4y = 10x + 7 y = 10x + 7

19. (a) Circle the equation of a straight line that is parallel to the line 3y = 2x + 6. [1]

$$3y = 2x + 7$$

$$2y = 3x + 6$$

$$3y = -2x + 6$$

$$-3y = 2x + 6$$

$$3y = -2x + 6$$
 $-3y = 2x + 6$ $2y = -3x + 6$

Circle the equation of a straight line that is perpendicular to the line y = 5x - 3.

$$y > 5x + 3$$

$$y = 3 + \frac{1}{3}$$

$$y = 3\sqrt{+3}$$

$$y = \frac{-x}{5} + 3$$

perpendicular when m, xm2=-1

$$\frac{1}{5} \times 5 = 1$$

$$-\frac{1}{5} \times 5 = -1$$

WJEC INTERMEDIATE TIER RELATIVE FREQUENCY WORKSHEET

A factory uses a machine to produce electrical sockets.

The manager carries out a survey to investigate the probability of the machine producing defective socket.

The relative frequency of defective sockets produced was calculated after testing a total of 100 2000, 3000, 4000 and 5000 sockets.

The results are plotted on the graph below.

A dice is thrown 50 times. The number shown on the dice is recorded after each throw. The table below shows the results recorded.

Number shown on dice	1	Ž.	£43	4	£7)	TO CO
Frequency	9	7	20	7	6	13

(a)	The relative frequency of throwing a 1 was calculated as $\frac{9}{50}$ = 0-18.	
	What was the relative frequency of throwing a 6? Give your answer as a decimal.	1
	13 - 0.26	
ess pare :	50	
		•
Ø	dice is thrown 3000 times.	
	7 x 3000 = 3000 x 7 = 420	· ••••
	50 50	
(c)	imes:	<u>.—</u> .
*** *** ***	1 x 3000 = 3000 x 1 = 500	
	6	.,
••••••		
2 27 476 KSG		
PK1 111 447		*** 177
	The second secon	

WJEC INTERMEDIATE TIER CIRCLE THEOREM WORKSHEET

PQ and PR are tangents to a circle with centre Q. $RPQ = 30^{\circ}$.

Diagram not drawn to scale

Find the size of OQR.

You must indic You must give	ate ang a reasi	y angles you on foreach s	calculate. lage of your wo	rking.			
When	8	tengend	tarches	a	radius	1+	creates
900			·				
		*** *** *** **** *** **** *** ***					
QÔR=	360) - (90	+90+30)			
	360) - 210)			* *** **** *** *** *** ***	
2	150	0					
00 = 00	,	isoce	les	***********			
			~			*** **** *** *** **** ****	***************************************
180 -	150	= 30°		*** *** *** ***			
30 =	2	- 15°		*** **** 111 **			

Points A, B, C and D lie on the circumference of a circle, centre O. BD is a diameter of the circle.

The straight line BC = 4.7 cm and $BAC = 28^{\circ}$.

Diagram not drawn to scale

Write down the size of BDC. Hence, calculate the length BD. You must show all your working.		[5]
O		
4.7cm	(50H) CAH	TOA
28		
1	$\sin \theta = 0$	$\sin 28 = 4.7$
. The color for the the color (100 to 100 to	H	H
		×H J ×H
	744 -444 445-4 445 4411 4545 MALII 117- MILE 7711 1	Hxsin 28 = 4.7
		÷ 51n28 1 ÷ 51n 28
THE	115 (244 5075) 441 000 441	H = 4,7
		5in 28
		H = 10.0 cm

Points A, B and C lie on the circumference of a circle, centre O. $\angle ACB = 37^{\circ}$.

Diagram not drawn to scale

Calculate the size of the reflex ar	ngle AÔB.	
360-(37 x 2) =	360 -	6
=	286°	
		,

Show clearly whether the following statement is true or false.

[4]

'If you increase a positive number by 10% and then decrease that new value by 10%, you get back to your original number.' $\frac{100}{100}$

10% of 10 = 10 = 1

10

10 + 1 = 11

10% of 11 = 11 = 1.1

10

11 - 1.1 = 9.9

10 z 9.9 : false

	(a)	Calculate:	39% of £576.				[2
		397, = 3	39 = 0.39				
			100				
	(3.39 x	576 = £27	14,64			
	(b)	Calculate	of 100.				
		Give your a	inswer correct to th	ne nearest who	le number.		[2]
		3 of	100 = 100	× 3 = 4	2.857	= 43	<u> </u>
		7	7		U		
					• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• •••		
•••	• •••• •••						*** *** **** *** *** ***
ĺ	(c)	How many	quarters are there i	in 102			\$94.21 Mg
		10 x 4		m re:			
• • • •			- 10				*** *** **** *** **** ***
• • • • •	•••••			144 1111 111 411			··· ··· ··· ··· ··· ··· ··· ··· ··· ··
Á	iali .	What fracti	on is equal to 50%	_s 1a			
47	uj	50'/ c	u is equal to 30%	01 6 f			[1]
• •••	**** *** **		1 1 × 1				•• ••• ••• ••• ••• ••• ••
			2 2 6	.12	······································		** *** *** ***
, TO	T	731- 2L - 2		tal sa			
/t	7)		action that is a recu	ırring decimal.			[1]
		<u>21</u> 35	$\left\langle \frac{10}{12} \right\rangle$	<u>17</u>	<u>15</u> 24	51	
		L	Ţ	1	1	uru J	
	*** *** ***	0.6	0,83	0.25	0.625	0,3	
		viden (225, 2232, 242, 242, 242, 242, 242, 242, 24				***************************************	
*** **							

(a) Calculate 8% of £3.25.	[3]
81 = 8 = 0.08	
100	
0.08 × 3.25 = £0.26	
(b) Evaluate 0-65 × 280 – $\frac{2}{9}$ of 513.	[3]
0.65 x 280 - 2 of 513	
9	
$= 0.65 \times 280 - 2 \times 513 = 0.65 \times 280 - 513$	x 2
9	************
= 182 - 114	
= 68	
(c) Calculate 3-5² – √8-6 .	
Give your answer correct to 2 decimal places.	[2]
$3.5^{2} - \sqrt{6.6} = 12.25 - 2.9325$	
= 9.317	
- 9 37	

(a) Express 54 as a percentage of 129. Give your answer to the nearest whole number.	[3
54 x 100 = 41.86/.	
129	
c 42').	
	••••••
(b) Share 25-8 kg in the ratio 5 · 1	
(b) Share 25-8 kg in the ratio 5 : 1. A : 5+1 = 6	[2]
	[2]
A: 5+1 = 6	[2]
A: 5+1 = 6 D: 25.8 = 4.3 6	[2]
A: 5+1 = 6 D: 25.8 = 4.3	[2]

WJEC INTERMEDIATE TIER MMMR WORKSHEET

Write down five numbers that satisfy all of the following conditions:

 They have 	e a median val e a range of 7.	and 9 inclusive. lue of 6.			[3]
<u>C</u>	<u>ء</u> ع		(140) (413) (413) (413) (413)		
5	3		** ** ** * * * ** * * * * * * * * * * *		
χ	5 V x5				
×	= 25	- must	add to	25	

.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			4) 14 11 7 44 41 4 14 7 11 11 11 11 11 14 44 47 7		
1	3			7	8
			ا ، د		
			74 		
Write down thre range is 8 mean is 1	3, and	less than 25, w	hose	e:	[2]
<u></u>	c = 13				
	3				
λ	3 L x 3		********		
	z = 39	- mws	t add	to 39	
The three integ	ers are	10	11	and 18	

11 23 5 9	18 20						
A number is to be written on the blank card.							
The mode and the median of all seven nu	imbers are both the same.						
Find one possible number that can be written on the blank card. [1] 5, 9, 11, (18), 26, 123, 26							
Median is 18 extra card must be 18	, to make mode 18						
Number on card							
(b) One extra number is added to the following							
6 8	13						
The mean of the new list of four numbers numbers.	is 1 less than the mean of the original three						
What number was added to the list?	[4]						
G+8+13 = 9							
3	4						
	x4 Vx4						
6 + 8 + 13 + x = 8	27 t x = 32						
4	-27 \ -27						
$27 + \alpha = 8$	x = 5						
4							
Number added	5						

A right-angled triangle LMN is shown below. $LN = 16.9 \,\mathrm{cm}$ and $LM = 6.5 \,\mathrm{cm}$.

b

Calculate the length MN. $c^2 - a^2 = b^2$	[3]
C - A = D	
16.92-6.52 = 62	
243.36 = b ²	
1 1 1	
15.6cm = b	

A triangular prism of length 2 metres is shown below.

Diagram not drawn to scale

AC = 21 cm, BC = 35 cm and $B\widehat{AC} = 90^\circ$.

(a) Calculate the area of triangle ABC. Give your answer in cm². You must show all your working.

You must show all your working. [5] $c^2 - a^2 = b^2 \qquad A = b \times h$ $35^2 - 21^2 = b^2 \qquad \qquad 2$ $184 = b^2 \qquad 28 \times 21$

 $784 = b = 28 \times 21$ $\sqrt{\sqrt{\sqrt{\sqrt{2}}}}$

 $28 \text{cm} = b = 294 \text{ cm}^2$

Alwyn often drives from Bangor to Cardiff. He always chooses one of two routes for these journeys. He either travels through Rhayader or through Hereford. The probability that he travels through Rhayader is 0-7.

Sometimes he decides to stop for a break during his journey. His decision is independent of the route he takes.

The probability that he travels through Rhayader and stops for a break is 0-42.

(8)	Complete the following tre	ee diagram.	[4]
ъ е		0.7xx x = 0.42	1-0.6:0.4
* ***** ****		70.7 L 30.7	
		x = 0.6	
	Route	Stops for a break	
Representation of the second	0-7	0.6 Yes	
(<u> </u>	Hereford	O. H. No	

(b)	Calculate break.	the probs	bility ti	hat A	slwyn	travels	through	i Hereford	but do	es not sio;) for s [2]
	0:3	x 0 . 4	= (J	12	3F 1785 ABEL 1975 7×3	,, er,, 3/41 11FL 74*	1157 XEST 1860+ XE	,, ₂₁₁₂	. X131 1724 YA441 4054 4411 22	
	,.,,,,,,,,,,,,,,,,,,,,,,,,,,,,										44 70011 4191 97
	174 177K 141XI II-P 171X EIIT	**** ***** **** ****				10 7111 4011 1002 110			KI BIJA 3221 BIJA 31		
						** **** **** **** ***		*** 1475 1747 8811 17574 12		,,,,	.,

7.	100	boxes	each	contain	10 balls
	All Bank Street	State of the last			MALE MARKET NAMES

45 of the boxes are labelled A

They each contain 7 black balls and 3 white balls.

25 of the boxes are labelled B.

They each contain 4 black balls and 6 white balls.

The rest of the boxes are labelled C.

They each contain 8 black balls and 2 white balls.

In a game, a player chooses a box at random, and then chooses a ball at random from that box.

(a) Complete the tree diagram shown below.

[1]

(b) What is the probability that a player will select a black ball?

13

1 - (0.45 + 0.25) = 1 - 0.7 = 0.3

P(Black ball) = $(0.45 \times 0.7) + (0.25 \times 0.4) + (0.3 \times 0.5)$ = 0.315 + 0.1 + 0.24= 0.655 3. All the members of a farming club visited the Royal Welsh Agricultural Show. They all travelled to the show either by bus or by car. None of them visited the show on more than one day. The decision to travel by car or by bus was independent of the day of the visit.

A member of the club was selected at random. The probability that this member travelled by bus was 0-87.

The probability that this member visited the show on the first day was $\frac{2}{3}$.

(a) Complete the tree diagram shown below.

(b) What is the probability that a member, chosen at random, was not one of those who travelled by bus on the first day of the show?

P(Bus + first day) = 0.87 x 2 = 0.58

P (Not bus & first clay) = 1-0.58 = 0.42